Mathematical Model of the Hereditary FitzHugh--Nagumo Oscillator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 72-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a new mathematical FitzHugh–Nagumo model with memory, which describes the propagation of nerve impulses in membranes. This model is an integro-differential equation with initial conditions (the Cauchy problem). The difference kernel (memory function) of the model equation is a power function; this allows one to rewrite it in terms of fractional derivatives. For the Cauchy problem, an explicit finite-difference scheme was constructed and examined by computer experiments on stability and convergence. The finite-difference scheme was implemented in the Maple software; simulation results were visualized, oscillograms and phase trajectories were obtained.
Keywords: heredity, FitzHugh–Nagumo model, fractional derivative, finite-difference scheme.
@article{INTO_2018_154_a8,
     author = {O. D. Lipko},
     title = {Mathematical {Model} of the {Hereditary} {FitzHugh--Nagumo} {Oscillator}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {72--80},
     publisher = {mathdoc},
     volume = {154},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_154_a8/}
}
TY  - JOUR
AU  - O. D. Lipko
TI  - Mathematical Model of the Hereditary FitzHugh--Nagumo Oscillator
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 72
EP  - 80
VL  - 154
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_154_a8/
LA  - ru
ID  - INTO_2018_154_a8
ER  - 
%0 Journal Article
%A O. D. Lipko
%T Mathematical Model of the Hereditary FitzHugh--Nagumo Oscillator
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 72-80
%V 154
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_154_a8/
%G ru
%F INTO_2018_154_a8
O. D. Lipko. Mathematical Model of the Hereditary FitzHugh--Nagumo Oscillator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 72-80. http://geodesic.mathdoc.fr/item/INTO_2018_154_a8/

[1] Volterra V., Teoriya funktsionalov, integralnykh i integro-differentsialnykh uravnenii., Nauka, M., 1982

[2] Lipko O. D., “Dinamicheskaya sistema FittsKhyu—Nagumo”, Mat. Mezhdunar. nauch. konf. «Aktualnye problemy prikladnoi matematiki i fiziki», IPMA KBNTs RAN, Nalchik, 2017, 126–127

[3] Lipko O. D., “Ereditarnoe modelnoe uravnenie Fittskhyu—Nagumo”, Mezhdunar. studench. nauch. vestn., 2017, no. 2, 28–28

[4] Litvinov R. G., Razrabotka i issledovanie algoritma dlya otsenki elektricheskoi aktivnosti serdtsa, Tomsk, 2016

[5] Maksimov A. G., “Analiz reshenii tipa «beguschii impuls» slozhnoi formy v raspredelennoi ekonomicheskoi srede, opisyvaemoi modelyu FittsKhyu—Nagumo”, Tr. In-ta sistem. anal. RAN, 63:1 (2013), 30–37

[6] Novikova E. R., “Matematicheskaya model ereditarnogo ostsillyatora Van der polya—Duffinga”, Mezhdunar. studench. nauch. vestn., 2017, no. 2, 40

[7] Parovik R. I., “Konechno-raznostnye skhemy dlya fraktalnogo ostsillyatora s peremennymi drobnymi poryadkami”, Vestn. KRAUNTs. Fiz.-mat., 2015, no. 2 (11), 88–85

[8] Parovik R. I., “Ob issledovanii ustoichivosti ereditarnogo ostsillyatora Van der Polya”, Fundam. issled., 2016, no. 3-2, 283–287

[9] Potapov A. A., “Razmyshleniya o fraktalnom metode, metode drobnykh integroproizvodnykh i fraktalnoi paradigme v sovremennom estestvoznanii”, Fraktaly i drobnoe ischislenie v estestvoznanii, 4:1 (2012), 103–142 | MR

[10] Riznichenko G. Yu., Lektsii po matematicheskim modelyam v biologii, In-t komp. issled., M.-Izhevsk, 2010

[11] Tverdyi D. A., “Uravnenie Rikkati s proizvodnoi drobnogo peremennogo poryadka”, Mezhdunar. studench. nauch. vestn., 2017, no. 2, 42

[12] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008

[13] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophys. J., 1 (1961), 446–466 | DOI

[14] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proc. IRE, 50 (2016), 2061–2070 | DOI

[15] Parovik R. I., “Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable-order fractional derivatives”, Arch. Control Sci., 26:3 (2016), 429–435 | DOI | MR