Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_154_a8, author = {O. D. Lipko}, title = {Mathematical {Model} of the {Hereditary} {FitzHugh--Nagumo} {Oscillator}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {72--80}, publisher = {mathdoc}, volume = {154}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_154_a8/} }
TY - JOUR AU - O. D. Lipko TI - Mathematical Model of the Hereditary FitzHugh--Nagumo Oscillator JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 72 EP - 80 VL - 154 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_154_a8/ LA - ru ID - INTO_2018_154_a8 ER -
%0 Journal Article %A O. D. Lipko %T Mathematical Model of the Hereditary FitzHugh--Nagumo Oscillator %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 72-80 %V 154 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_154_a8/ %G ru %F INTO_2018_154_a8
O. D. Lipko. Mathematical Model of the Hereditary FitzHugh--Nagumo Oscillator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 72-80. http://geodesic.mathdoc.fr/item/INTO_2018_154_a8/
[1] Volterra V., Teoriya funktsionalov, integralnykh i integro-differentsialnykh uravnenii., Nauka, M., 1982
[2] Lipko O. D., “Dinamicheskaya sistema FittsKhyu—Nagumo”, Mat. Mezhdunar. nauch. konf. «Aktualnye problemy prikladnoi matematiki i fiziki», IPMA KBNTs RAN, Nalchik, 2017, 126–127
[3] Lipko O. D., “Ereditarnoe modelnoe uravnenie Fittskhyu—Nagumo”, Mezhdunar. studench. nauch. vestn., 2017, no. 2, 28–28
[4] Litvinov R. G., Razrabotka i issledovanie algoritma dlya otsenki elektricheskoi aktivnosti serdtsa, Tomsk, 2016
[5] Maksimov A. G., “Analiz reshenii tipa «beguschii impuls» slozhnoi formy v raspredelennoi ekonomicheskoi srede, opisyvaemoi modelyu FittsKhyu—Nagumo”, Tr. In-ta sistem. anal. RAN, 63:1 (2013), 30–37
[6] Novikova E. R., “Matematicheskaya model ereditarnogo ostsillyatora Van der polya—Duffinga”, Mezhdunar. studench. nauch. vestn., 2017, no. 2, 40
[7] Parovik R. I., “Konechno-raznostnye skhemy dlya fraktalnogo ostsillyatora s peremennymi drobnymi poryadkami”, Vestn. KRAUNTs. Fiz.-mat., 2015, no. 2 (11), 88–85
[8] Parovik R. I., “Ob issledovanii ustoichivosti ereditarnogo ostsillyatora Van der Polya”, Fundam. issled., 2016, no. 3-2, 283–287
[9] Potapov A. A., “Razmyshleniya o fraktalnom metode, metode drobnykh integroproizvodnykh i fraktalnoi paradigme v sovremennom estestvoznanii”, Fraktaly i drobnoe ischislenie v estestvoznanii, 4:1 (2012), 103–142 | MR
[10] Riznichenko G. Yu., Lektsii po matematicheskim modelyam v biologii, In-t komp. issled., M.-Izhevsk, 2010
[11] Tverdyi D. A., “Uravnenie Rikkati s proizvodnoi drobnogo peremennogo poryadka”, Mezhdunar. studench. nauch. vestn., 2017, no. 2, 42
[12] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008
[13] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophys. J., 1 (1961), 446–466 | DOI
[14] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proc. IRE, 50 (2016), 2061–2070 | DOI
[15] Parovik R. I., “Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable-order fractional derivatives”, Arch. Control Sci., 26:3 (2016), 429–435 | DOI | MR