Mathematical Modeling of Evolution of Cloud Drops Taking into Account the Influence of the Fractal Structure of Clouds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 62-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based of a differential equation of fractional order, we examine the influence of the fractal structure of the environment on the growth of small cloud drops at the initial stage of the cloud evolution caused by the condensation and the gravitational coagulation of drops. We construct a model of electrodynamic coagulation of drops in the cloud environment with fractal structure under the action of an electric field. Numerical experiments were carried out to estimate the influence of the fractal structure of the environment on the growth of cloud particles for various combinations of microphysical parameters. The general dependence of the growth of cloud particles on various parameters of the fractal structure is determined.
Keywords: cloud drop, mathematical model, convective cloud.
Mots-clés : fractal dimension
@article{INTO_2018_154_a7,
     author = {T. S. Kumykov},
     title = {Mathematical {Modeling} of {Evolution} of {Cloud} {Drops} {Taking} into {Account} the {Influence} of the {Fractal} {Structure} of {Clouds}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {62--71},
     publisher = {mathdoc},
     volume = {154},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_154_a7/}
}
TY  - JOUR
AU  - T. S. Kumykov
TI  - Mathematical Modeling of Evolution of Cloud Drops Taking into Account the Influence of the Fractal Structure of Clouds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 62
EP  - 71
VL  - 154
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_154_a7/
LA  - ru
ID  - INTO_2018_154_a7
ER  - 
%0 Journal Article
%A T. S. Kumykov
%T Mathematical Modeling of Evolution of Cloud Drops Taking into Account the Influence of the Fractal Structure of Clouds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 62-71
%V 154
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_154_a7/
%G ru
%F INTO_2018_154_a7
T. S. Kumykov. Mathematical Modeling of Evolution of Cloud Drops Taking into Account the Influence of the Fractal Structure of Clouds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 62-71. http://geodesic.mathdoc.fr/item/INTO_2018_154_a7/

[1] Alikhanov A. A., “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Differ. uravn., 46:5 (2010), 658–664 | MR | Zbl

[2] Kumykov T. S., Parovik R. I., “Matematicheskoe modelirovanie zakona izmeneniya zaryada oblachnykh kapel vo fraktalnoi srede”, Vestn. KRAUNTs. Fiz.-mat. nauki, 1:10 (2015), 12–17 | Zbl

[3] Kumykov T. S., “Dinamiki zaryada oblachnykh kapel vo fraktalnoi srede”, Mat. model., 12 (2016), 56–62 | MR | Zbl

[4] Kumykov T. S., “Modelirovanie vozniknoveniya fraktalnykh struktur «babstonov» v atmosfere”, Nauch. vedomosti BelGU. Ser. Mat. Fiz., 44:20 (241) (2016), 145–153

[5] Pskhu A. V., Kraevye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi drobnogo i kontinualnogo poryadka, KBNTs RAN, Nalchik, 2005

[6] Ris F., Valdfogel A., “Analiz fraktalnoi razmernosti oblakov s moschnymi konvektivnymi tokami”, Fraktaly v fizike, Tr. VI Mezhdunar. simp. po fraktalam v fizike (MTsTF, Triest, Italiya, 9-12 iyulya 1985 g.), Mir, M., 1988, 644–649

[7] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[8] Timofeev M. P., Shvets M. E., “Isparenie melkikh kapel vody”, Meteorologiya i gidrologiya, 2 (1948), 14–18

[9] Taukenova F. I., Shkhanukov-Lafishev M. Kh., “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Zh. vychisl. mat. mat. fiz., 46:10 (2006), 1871–1881 | MR

[10] Feder E., Fraktaly, Mir, M., 1991

[11] Shishkin N. S., Oblaka, osadki i grozovoe elektrichestvo, Gidrometeoizdat, L., 1964

[12] Iudin D. I., Trakhtengerts V. Y., Hayakawa M., “Fractal dynamics of electric discharges in a thundercloud”, Phys. Rev. E., 68 (2003), 016601 | DOI

[13] Mandelbrot B. B., “Fractals in physics: Squig dusters, diffusions, fractal measures, and the unicity of fractal dimensionality”, J. Stat. Phys., 34 (1983), 895–930 | DOI | MR

[14] Sweilam N. H., Khader M. M., Mahdy A. M. S., “Numerical studies for solving fractional-order logistic equation”, Int. J. Pure Appl. Math., 78:8 (2012), 1199–1210 | MR