Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_154_a7, author = {T. S. Kumykov}, title = {Mathematical {Modeling} of {Evolution} of {Cloud} {Drops} {Taking} into {Account} the {Influence} of the {Fractal} {Structure} of {Clouds}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {62--71}, publisher = {mathdoc}, volume = {154}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_154_a7/} }
TY - JOUR AU - T. S. Kumykov TI - Mathematical Modeling of Evolution of Cloud Drops Taking into Account the Influence of the Fractal Structure of Clouds JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 62 EP - 71 VL - 154 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_154_a7/ LA - ru ID - INTO_2018_154_a7 ER -
%0 Journal Article %A T. S. Kumykov %T Mathematical Modeling of Evolution of Cloud Drops Taking into Account the Influence of the Fractal Structure of Clouds %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 62-71 %V 154 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_154_a7/ %G ru %F INTO_2018_154_a7
T. S. Kumykov. Mathematical Modeling of Evolution of Cloud Drops Taking into Account the Influence of the Fractal Structure of Clouds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 62-71. http://geodesic.mathdoc.fr/item/INTO_2018_154_a7/
[1] Alikhanov A. A., “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Differ. uravn., 46:5 (2010), 658–664 | MR | Zbl
[2] Kumykov T. S., Parovik R. I., “Matematicheskoe modelirovanie zakona izmeneniya zaryada oblachnykh kapel vo fraktalnoi srede”, Vestn. KRAUNTs. Fiz.-mat. nauki, 1:10 (2015), 12–17 | Zbl
[3] Kumykov T. S., “Dinamiki zaryada oblachnykh kapel vo fraktalnoi srede”, Mat. model., 12 (2016), 56–62 | MR | Zbl
[4] Kumykov T. S., “Modelirovanie vozniknoveniya fraktalnykh struktur «babstonov» v atmosfere”, Nauch. vedomosti BelGU. Ser. Mat. Fiz., 44:20 (241) (2016), 145–153
[5] Pskhu A. V., Kraevye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi drobnogo i kontinualnogo poryadka, KBNTs RAN, Nalchik, 2005
[6] Ris F., Valdfogel A., “Analiz fraktalnoi razmernosti oblakov s moschnymi konvektivnymi tokami”, Fraktaly v fizike, Tr. VI Mezhdunar. simp. po fraktalam v fizike (MTsTF, Triest, Italiya, 9-12 iyulya 1985 g.), Mir, M., 1988, 644–649
[7] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987
[8] Timofeev M. P., Shvets M. E., “Isparenie melkikh kapel vody”, Meteorologiya i gidrologiya, 2 (1948), 14–18
[9] Taukenova F. I., Shkhanukov-Lafishev M. Kh., “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Zh. vychisl. mat. mat. fiz., 46:10 (2006), 1871–1881 | MR
[10] Feder E., Fraktaly, Mir, M., 1991
[11] Shishkin N. S., Oblaka, osadki i grozovoe elektrichestvo, Gidrometeoizdat, L., 1964
[12] Iudin D. I., Trakhtengerts V. Y., Hayakawa M., “Fractal dynamics of electric discharges in a thundercloud”, Phys. Rev. E., 68 (2003), 016601 | DOI
[13] Mandelbrot B. B., “Fractals in physics: Squig dusters, diffusions, fractal measures, and the unicity of fractal dimensionality”, J. Stat. Phys., 34 (1983), 895–930 | DOI | MR
[14] Sweilam N. H., Khader M. M., Mahdy A. M. S., “Numerical studies for solving fractional-order logistic equation”, Int. J. Pure Appl. Math., 78:8 (2012), 1199–1210 | MR