Construction of a Steiner Streaming Network of the Second Optimality Rank
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 32-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical models and the method of rank optimization for Steiner streaming networks are presented. The method is based on the nonlocal minimum condition and the dynamical decomposition of the current Steiner network into intersecting subnetworks to be optimized that have equal dimensions. Numerical experiments are described that demonstrate the efficiency of the method in the design of distribution pipeline networks for water and gas supply.
Keywords: Steiner streaming network, mathematical modeling, rank optimization, computer design.
Mots-clés : dynamical decomposition
@article{INTO_2018_154_a3,
     author = {M. A. Bagov and V. Ch. Kudaev},
     title = {Construction of a {Steiner} {Streaming} {Network} of the {Second} {Optimality} {Rank}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {32--42},
     publisher = {mathdoc},
     volume = {154},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_154_a3/}
}
TY  - JOUR
AU  - M. A. Bagov
AU  - V. Ch. Kudaev
TI  - Construction of a Steiner Streaming Network of the Second Optimality Rank
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 32
EP  - 42
VL  - 154
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_154_a3/
LA  - ru
ID  - INTO_2018_154_a3
ER  - 
%0 Journal Article
%A M. A. Bagov
%A V. Ch. Kudaev
%T Construction of a Steiner Streaming Network of the Second Optimality Rank
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 32-42
%V 154
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_154_a3/
%G ru
%F INTO_2018_154_a3
M. A. Bagov; V. Ch. Kudaev. Construction of a Steiner Streaming Network of the Second Optimality Rank. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 32-42. http://geodesic.mathdoc.fr/item/INTO_2018_154_a3/

[1] Bagov M. A, Kudaev V. Ch., “Lokalnoe reshenie setevoi zadachi Shteinera”, Doklady Adygskoi (Cherkesskoi) Akademii nauk, 2014, no. 4 (16), 9–14

[2] Bagov M. A, Kudaev V. Ch., “Preobrazovanie terminalnoi seti v set Shteinera”, Izvestiya KBNTs RAN, 2015, no. 6 (68), 31–37

[3] Bagov M. A., Kudaev V. Ch., “Setevaya zadacha Shteinera s uchetom energeticheskikh zatrat”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2016, no. 4–1 (16), 85–92 | MR | Zbl

[4] Bagov M. A., Kudaev V. Ch., “Matematicheskoe modelirovanie i optimizatsiya truboprovodnoi seti Shteinera”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2017, no. 1 (73), 5–11

[5] Bulatov V. P., Kassinskaya L. I., “Nekotorye metody minimizatsii vognutoi funktsii na vypuklom mnogogrannike”, Metody optimizatsii i ikh prilozheniya, SEI SO AN SSSR, Irkutsk, 1987, 151–172

[6] Gilbert E. N., Pollak G. O., “Minimalnye derevya Shteinera”, Kiberneticheskii sbornik. Nov. ser., v. 8, 1971, 19–49 | MR

[7] Gordeev E. N., Tarastsov O. G., “Zadacha Shteinera. Obzor”, Diskretnaya matematika, 1993, no. 5 (2), 3–28 | Zbl

[8] Kelmans A. K., “Postroenie minimalnogo pokryvayuschego dereva”, Kibernetika i upravlenie, Nauka, M., 1967, 115–130

[9] Lotarev D. T., “Zadacha Shteinera dlya transportnoi seti na poverkhnosti zadannoi tsifrovoi modelyu”, Avtomatika i telemekhanika, 10 (1980), 104–115 | MR | Zbl

[10] Lotarev D. T., Uzdemir A. P., “Preobrazovanie zadachi Shteinera na evklidovoi ploskosti k zadache Shteinera na grafe”, Avtomat. i telemekh., 2005, no. 10, 80–92 | MR | Zbl

[11] Merenkov A. P., Sennova E. V., Sumarokov S. V. i dr., Matematicheskoe modelirovanie i optimizatsiya sistem teplo-, vodo-, nefte- i gazosnobzheniya, Nauka, Novosibirsk, 1992

[12] Mikhalevich V. S., Trubin V. A., Shor N. Z., Optimizatsionnye zadachi proizvodstvenno-transportnogo planirovaniya, Nauka, M., 1986

[13] Moiseev N. N., Ivanilov Yu. P., Stolyarova E. M., Metody optimizatsii, Nauka, M., 1978

[14] Panyukov A. V., “Topologicheskie metody resheniya zadachi Shteinera na grafe”, Avtomat. i telemekh., 2004, no. 3, 89–99 | MR | Zbl

[15] Trubin V. A., Svoistva i metody resheniya zadach optimalnogo sinteza setei, Obschestvo «Znanie» USSR, Kiev, 1982

[16] Tui Kh., “Vognutoe programmirovanie pri lineinykh ogranicheniyakh”, Dokl. AN SSSR, 159:1 (1964), 32–35 | Zbl

[17] Boyce W. M., “An improved program for the full Steiner tree problem”, ACM Trans. Math. Software, 3 (1977), 359–385 | DOI | MR | Zbl

[18] Boyce W. M., Seery J. B., “STEINER 72: An improved version of the minimal network problem Rech. Rep., 35”, Comp. Sci. Res. CTR. Bell. Lab. Murray Hill, N.-Y. (undated)

[19] Cockayne E. J., “On the efficiency of the algorithm for Steiner minimal trees”, SIAM J. Appl. Math., 18 (1970), 150–159 | DOI | MR | Zbl

[20] Gilbert E. N., “Minimal Cost Communication Networks”, Bell System technological Journal, 1967, no. 9, 48–50

[21] Korte B., Promel H.-J., Steger A., Steiner trees in VLSI-layout, Inst. für Okon. und Op. Res. Rheinische Fr.-Wil.-Univ., Bonn, 1989 | MR

[22] Melzak Z. A., “On the problem of Steiner”, Canad. Math. Bull., 4 (1961), 143–148 | DOI | MR | Zbl