Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_154_a3, author = {M. A. Bagov and V. Ch. Kudaev}, title = {Construction of a {Steiner} {Streaming} {Network} of the {Second} {Optimality} {Rank}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {32--42}, publisher = {mathdoc}, volume = {154}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_154_a3/} }
TY - JOUR AU - M. A. Bagov AU - V. Ch. Kudaev TI - Construction of a Steiner Streaming Network of the Second Optimality Rank JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 32 EP - 42 VL - 154 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_154_a3/ LA - ru ID - INTO_2018_154_a3 ER -
%0 Journal Article %A M. A. Bagov %A V. Ch. Kudaev %T Construction of a Steiner Streaming Network of the Second Optimality Rank %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 32-42 %V 154 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_154_a3/ %G ru %F INTO_2018_154_a3
M. A. Bagov; V. Ch. Kudaev. Construction of a Steiner Streaming Network of the Second Optimality Rank. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 32-42. http://geodesic.mathdoc.fr/item/INTO_2018_154_a3/
[1] Bagov M. A, Kudaev V. Ch., “Lokalnoe reshenie setevoi zadachi Shteinera”, Doklady Adygskoi (Cherkesskoi) Akademii nauk, 2014, no. 4 (16), 9–14
[2] Bagov M. A, Kudaev V. Ch., “Preobrazovanie terminalnoi seti v set Shteinera”, Izvestiya KBNTs RAN, 2015, no. 6 (68), 31–37
[3] Bagov M. A., Kudaev V. Ch., “Setevaya zadacha Shteinera s uchetom energeticheskikh zatrat”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2016, no. 4–1 (16), 85–92 | MR | Zbl
[4] Bagov M. A., Kudaev V. Ch., “Matematicheskoe modelirovanie i optimizatsiya truboprovodnoi seti Shteinera”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2017, no. 1 (73), 5–11
[5] Bulatov V. P., Kassinskaya L. I., “Nekotorye metody minimizatsii vognutoi funktsii na vypuklom mnogogrannike”, Metody optimizatsii i ikh prilozheniya, SEI SO AN SSSR, Irkutsk, 1987, 151–172
[6] Gilbert E. N., Pollak G. O., “Minimalnye derevya Shteinera”, Kiberneticheskii sbornik. Nov. ser., v. 8, 1971, 19–49 | MR
[7] Gordeev E. N., Tarastsov O. G., “Zadacha Shteinera. Obzor”, Diskretnaya matematika, 1993, no. 5 (2), 3–28 | Zbl
[8] Kelmans A. K., “Postroenie minimalnogo pokryvayuschego dereva”, Kibernetika i upravlenie, Nauka, M., 1967, 115–130
[9] Lotarev D. T., “Zadacha Shteinera dlya transportnoi seti na poverkhnosti zadannoi tsifrovoi modelyu”, Avtomatika i telemekhanika, 10 (1980), 104–115 | MR | Zbl
[10] Lotarev D. T., Uzdemir A. P., “Preobrazovanie zadachi Shteinera na evklidovoi ploskosti k zadache Shteinera na grafe”, Avtomat. i telemekh., 2005, no. 10, 80–92 | MR | Zbl
[11] Merenkov A. P., Sennova E. V., Sumarokov S. V. i dr., Matematicheskoe modelirovanie i optimizatsiya sistem teplo-, vodo-, nefte- i gazosnobzheniya, Nauka, Novosibirsk, 1992
[12] Mikhalevich V. S., Trubin V. A., Shor N. Z., Optimizatsionnye zadachi proizvodstvenno-transportnogo planirovaniya, Nauka, M., 1986
[13] Moiseev N. N., Ivanilov Yu. P., Stolyarova E. M., Metody optimizatsii, Nauka, M., 1978
[14] Panyukov A. V., “Topologicheskie metody resheniya zadachi Shteinera na grafe”, Avtomat. i telemekh., 2004, no. 3, 89–99 | MR | Zbl
[15] Trubin V. A., Svoistva i metody resheniya zadach optimalnogo sinteza setei, Obschestvo «Znanie» USSR, Kiev, 1982
[16] Tui Kh., “Vognutoe programmirovanie pri lineinykh ogranicheniyakh”, Dokl. AN SSSR, 159:1 (1964), 32–35 | Zbl
[17] Boyce W. M., “An improved program for the full Steiner tree problem”, ACM Trans. Math. Software, 3 (1977), 359–385 | DOI | MR | Zbl
[18] Boyce W. M., Seery J. B., “STEINER 72: An improved version of the minimal network problem Rech. Rep., 35”, Comp. Sci. Res. CTR. Bell. Lab. Murray Hill, N.-Y. (undated)
[19] Cockayne E. J., “On the efficiency of the algorithm for Steiner minimal trees”, SIAM J. Appl. Math., 18 (1970), 150–159 | DOI | MR | Zbl
[20] Gilbert E. N., “Minimal Cost Communication Networks”, Bell System technological Journal, 1967, no. 9, 48–50
[21] Korte B., Promel H.-J., Steger A., Steiner trees in VLSI-layout, Inst. für Okon. und Op. Res. Rheinische Fr.-Wil.-Univ., Bonn, 1989 | MR
[22] Melzak Z. A., “On the problem of Steiner”, Canad. Math. Bull., 4 (1961), 143–148 | DOI | MR | Zbl