Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_154_a14, author = {Z. M. Shibzukhov}, title = {Principle of {Minimizing} {Empirical} {Risk} and {Averaging} {Aggregate} {Functions}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {123--137}, publisher = {mathdoc}, volume = {154}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_154_a14/} }
TY - JOUR AU - Z. M. Shibzukhov TI - Principle of Minimizing Empirical Risk and Averaging Aggregate Functions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 123 EP - 137 VL - 154 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_154_a14/ LA - ru ID - INTO_2018_154_a14 ER -
%0 Journal Article %A Z. M. Shibzukhov %T Principle of Minimizing Empirical Risk and Averaging Aggregate Functions %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 123-137 %V 154 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_154_a14/ %G ru %F INTO_2018_154_a14
Z. M. Shibzukhov. Principle of Minimizing Empirical Risk and Averaging Aggregate Functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 123-137. http://geodesic.mathdoc.fr/item/INTO_2018_154_a14/
[1] Khyuber P., Robastnost v statistike, Mir, M., 1984 | MR
[2] Shibzukhov Z. M., “Agregiruyuschie korrektnye operatsii nad algoritmami”, Dokl. RAN, 462:6 (2015), 649–-652 | DOI | MR | Zbl
[3] Beliakov G. , Sola H., Calvo T., A practical guide to averaging functions, Springer-Verlag, 2016 | MR
[4] Calvo T., Beliakov G., “Aggregation functions based on penalties”, Fuzzy Sets Syst., 161:10 (2010), 1420–1436 | DOI | MR | Zbl
[5] Grabich M., Marichal J.-L., Pap E., “Aggregation Functions”, Encycl. Math. Appl., v. 127, Cambridge Univ. Press, 2009 | MR
[6] Knigma D. P., Ba J., Adam: A method for stochastic optimization, arXiv: 1412.6980 [cs.LG]
[7] Koenker R., Quantile regression, Campridge Univ. Press, N.Y., 2005 | MR | Zbl
[8] Ma Y., Li L., Huang X., Wang S., “Robust support vector machine using least median loss penalty”, IFAC Proc. Vols. 18th IFAC World Congr., 44:1 (2011), 11208–11213
[9] Mesiar R., Komornikova M., Kolesarova A., Calvo T., “Aggregation functions: A revision”, Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, eds. Bustince H., Herrera F., Montero J., Springer-Verlag, Berlin–Heidelberg, 2008 | MR | Zbl
[10] Newey W., Powell J., “Asymmetric least square estimation and testing”, Econometrica, 55:4 (1987), 819–847 | DOI | MR | Zbl
[11] Rousseeuw P. J., “Least median of square regression”, J. Am. Stat. Assoc., 79 (1984), 871–-880 | DOI | MR | Zbl
[12] Rousseeuw P. J., Leroy A. M., Robust regression and outlier detection, Wiley, N.Y., 1987 | MR | Zbl
[13] Schmidt M., Le Roux N., Bach F., Minimizing finite sums with the stochastic average gradient, arXiv: 1309.2388 [math.OC] | MR
[14] Shibzukhov Z. M., “Correct aggregate operations with algorithms”, Pattern Recogn. Image Anal., 24:3 (2014), 377–-382 | DOI
[15] Vapnik V., The nature of statistical learning theory, Springer-Verlag, 2000 | MR | Zbl
[16] Yohai V. J., “High breakdown-point and high effciency robust estimates for regression”, Ann. Stat., 15 (1987), 642–656 | DOI | MR | Zbl