Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_154_a12, author = {D. A. Tvyordyj}, title = {Hereditary {Riccati} {Equation} with {Fractional} {Derivative} of {Variable} {Order}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {105--112}, publisher = {mathdoc}, volume = {154}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_154_a12/} }
TY - JOUR AU - D. A. Tvyordyj TI - Hereditary Riccati Equation with Fractional Derivative of Variable Order JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 105 EP - 112 VL - 154 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_154_a12/ LA - ru ID - INTO_2018_154_a12 ER -
%0 Journal Article %A D. A. Tvyordyj %T Hereditary Riccati Equation with Fractional Derivative of Variable Order %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 105-112 %V 154 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_154_a12/ %G ru %F INTO_2018_154_a12
D. A. Tvyordyj. Hereditary Riccati Equation with Fractional Derivative of Variable Order. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 105-112. http://geodesic.mathdoc.fr/item/INTO_2018_154_a12/
[1] Baranov S. V., Kuznetsov S. P., Ponomarenko V. I., “Khaos v fazovoi dinamike ostsillyatora Van der Polya s modulirovannoi dobrotnostyu i dopolnitelnoi zapazdyvayuschei obratnoi svyazyu”, Izv. vuzov. Prikl. nelin. dinamika, 18:1 (2010), 12–23 | MR
[2] Berezin I. S., Zhidkov N. P., Metody vychislenii, M.-L., 1962
[3] Kumakshev S. A., “Issledovanie regulyarnykh i relaksatsionnykh kolebanii ostsillyatorov Releya i Van der Polya”, Vestn. Nizhegorod. un-ta im. N. I. Lobachevskogo, 2011, no. 4-2, 203–205
[4] Makarov D. V., Parovik R. I., “Obobschennaya matematicheskaya model Dubovskogo dlya prognozirovaniya ekonomicheskikh krizisov”, Nauch.-tekhn. vestn. Povolzhya, 2016, no. 1, 74–77
[5] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003
[6] Novikova E. R., “Ostsillyator Van der Polya—Duffinga s effektom ereditarnosti”, Vestn. KRAUNTs. Fiz.-mat. nauki, 2017, no. 2 (18), 65–75
[7] Parovik R. I., Matematicheskoe modelirovanie lineinykh ereditarnykh ostsillyatorov, KamGU imeni Vitusa Beringa, Petropavlovsk-Kamchatskii, 2015
[8] Parovik R. I., “O chislennom reshenii uravneniya fraktalnogo ostsillyatora s proizvodnoi drobnogo peremennogo poryadka ot vremeni”, Vestn. KRAUNTs. Fiz.-mat. nauki, 2014, no. 1 (8), 60–-65 | Zbl
[9] Tverdyi D. A., “Uravnenie Rikkati s proizvodnoi drobnogo peremennogo poryadka”, Mezhdunar. stud. nauch. vestn., 2017, no. 2, 42
[10] Tverdyi D. A., “Uravnenie Rikkati s peremennoi ereditarnostyu”, Vestn. KRAUNTs. Fiz.-mat. nauki, 2017, no. 1 (17), 44–-53 | MR
[11] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008
[12] Feder E., Fraktaly, Mir, M., 1991
[13] Makarov D. V., Parovik R. I., “Modeling of the economic cycles using the theory of fractional calculus”, J. Internet Banking Commerce, 21:S6 (2016), 1
[14] Parovik R. I., “Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable-order fractional derivatives”, Arch. Control Sci., 26:3 (2016), 429–435 | DOI | MR
[15] Petras I., Fractional-order nonlinear systems. Modeling, analysis and simulation, Springer, 2011 | MR | Zbl
[16] Sweilam N. H., Khader M. M., Mahdy A. M. S., “Numerical studies for solving fractional Riccati differential equation”, Appl. Appl. Math., 7:2 (2012), 595–-608 | MR | Zbl