On a Certain Finite-Difference Scheme for a Hereditary Oscillatory Equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 89-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we proposed an explicit finite-difference scheme for numerical simulation of the Cauchy problem for a nonlinear integro-differential equation that describes an oscillatory process with friction and memory (heredity) and the corresponding local initial conditions. Approximation, stability, and convergence of the finite-difference scheme are examined. Results of computer experiments that implement the numerical scheme proposed confirm theoretical estimates.
Keywords: stability, explicit finite-difference scheme, heredity, integro-differential equation, memory function, Runge rule, approximation.
Mots-clés : convergence
@article{INTO_2018_154_a10,
     author = {R. I. Parovik},
     title = {On a {Certain} {Finite-Difference} {Scheme} for a {Hereditary} {Oscillatory} {Equation}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {89--98},
     publisher = {mathdoc},
     volume = {154},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_154_a10/}
}
TY  - JOUR
AU  - R. I. Parovik
TI  - On a Certain Finite-Difference Scheme for a Hereditary Oscillatory Equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 89
EP  - 98
VL  - 154
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_154_a10/
LA  - ru
ID  - INTO_2018_154_a10
ER  - 
%0 Journal Article
%A R. I. Parovik
%T On a Certain Finite-Difference Scheme for a Hereditary Oscillatory Equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 89-98
%V 154
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_154_a10/
%G ru
%F INTO_2018_154_a10
R. I. Parovik. On a Certain Finite-Difference Scheme for a Hereditary Oscillatory Equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 89-98. http://geodesic.mathdoc.fr/item/INTO_2018_154_a10/

[1] Drobysheva I. V. paper Matematicheskoe modelirovanie nelineinykh ereditarnykh ostsillyatorov na primere ostsillyatora Duffinga s drobnymi proizvodnymi v smysle Rimana—Liuvillya, Vestn. KRAUNTs. Fiz.-mat. nauki, 2016, no. 2 (13), 43–49 | MR | Zbl

[2] Zaitsev V. V., Karlov A. V., Yarovoi G. P., “Dinamika avtokolebanii aktivnogo fraktalnogo ostsillyatora”, Teor. fiz., 14 (2013), 11–18

[3] Zaitsev V. V., Karlov A. V., Nuravev D. B., “Chislennyi analiz avtokolebanii aktivnogo fraktalnogo ostsillyatora”, Fiz. voln. protsessov i radiotekhn. sist., 16:2 (2013), 42–48

[4] Kenetova R. O., “Osobennosti modelirovaniya passionarnykh protsessov, obuslovlennye izmeneniyami v strukturakh etnosa”, Vestn. KRAUNTs. Fiz.-mat. nauki, 2016, no. 4 (15), 24–29 | MR

[5] Lipko O. D., “Matematicheskaya model rasprostraneniya nervnogo impulsa s uchetom ereditarnosti”, Vestn. KRAUNTs. Fiz.-mat. nauki, 2017, no. 1 (17), 33–43 | MR

[6] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[7] Parovik R. I., Matematicheskoe modelirovanie lineinykh ostsillyatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskii, 2015

[8] Parovik R. I., “Konechno-raznostnye skhemy dlya fraktalnogo ostsillyatora s peremennymi drobnymi poryadkami”, Vestn. KRAUNTs. Fiz.-mat. nauki, 2015, no. 2 (11), 88–95 | Zbl

[9] Parovik R. I., “Matematicheskaya model fraktalnogo ostsillyatora Van-der-Polya”, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. akad. nauk, 17:2 (2015), 57–62

[10] Parovik R. I., “Drobnoe ischislenie v teorii kolebatelnykh sistem”, Sovr. naukoemkie tekhnol., 2017, no. 1, 61–68

[11] Parovik R. I., “Matematicheskoe modelirovanie ereditarnogo ostsillyatora Eiri s treniem”, Vestn. Yuzhno-Ural. gos. un-ta. Ser. mat. model. programmir., 10:1 (2017), 138–148 | Zbl

[12] Potapov A. A., Fraktaly v radiofizike i radiolakatsii. Topologiya vyborki, Universitetskaya kniga, M., 2005

[13] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008

[14] Shreder M., Fraktaly, khaos i stepennye zakony, RKhD, Izhevsk, 2001

[15] Mainardi M., “Fractional relaxation-occilation and fractional diffusion-wave phenomena”, Chaos, Solitons and Fractals, 7:9 (1996), 1461–1477 | DOI | MR | Zbl

[16] Makarov D. V., Parovik R. I., “Modeling of the economic cycles using the theory of fractional calculus”, J. Internet Banking Commerce, 21:S6 (2016)

[17] Parovik R. I., “Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable-order fractional derivatives”, Arch. Control Sci., 26:3 (2016), 429–435 | DOI | MR

[18] Petras I., Fractional-order nonlinear systems. Modeling, analysis and simulation, Springer-Verlag, Berlin–Heidelberg, 2011 | Zbl

[19] Pudlubny I., “Fractional-order systems and $PI^\lambda D^\delta$-controllers”, IEEE Trans. Automat. Conrtol, 11:1 (1999), 208–214 | DOI | MR

[20] Syta A., Litak G., Lenci S., Scheffler M., “Chaotic vibrations of the Duffing system with fractional damping”, Chaos: Interdisc. J. Nonlin. Sci., 24:1 (2014), 013107 | DOI | MR | Zbl

[21] Volterra V., “Sur les équations intégro-différentielles et leurs applications”, Acta Math., 35:1 (1912), 295–356 | DOI | MR | Zbl

[22] Xu Y., Erturk V. S., “A finite difference technique for solving variable-order fractional integro-differential equations”, Bull. Iran. Math. Soc., 40:3 (2014), 699–712 | MR | Zbl