Operators Whose Resolvents Have Convolution Representations and Their Spectral Analysis
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 94-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study spectral decompositions with respect to a system of generalized eigenvectors of second-order differential operators on the interval whose resolvents possess convolution representations. We obtain the convolution representation of resolvents of second-order differential operators on an interval with integral boundary conditions. Then, using the convolution generated by the initial differential operator, we construct the Fourier transform. A connection between the convolution operation in the original functional space and the multiplication operation in the space of Fourier transforms is established. Finally, the problem on the convergence of spectral expansions generated by the original differential operator is studied. Examples of convolutions generated by operators are also presented.
Mots-clés : convolution, spectral decomposition
Keywords: resolvent, boundary-value problem, differential operator, boundary form.
@article{INTO_2018_153_a6,
     author = {B. E. Kanguzhin},
     title = {Operators {Whose} {Resolvents} {Have} {Convolution} {Representations} and {Their} {Spectral} {Analysis}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {94--107},
     publisher = {mathdoc},
     volume = {153},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_153_a6/}
}
TY  - JOUR
AU  - B. E. Kanguzhin
TI  - Operators Whose Resolvents Have Convolution Representations and Their Spectral Analysis
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 94
EP  - 107
VL  - 153
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_153_a6/
LA  - ru
ID  - INTO_2018_153_a6
ER  - 
%0 Journal Article
%A B. E. Kanguzhin
%T Operators Whose Resolvents Have Convolution Representations and Their Spectral Analysis
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 94-107
%V 153
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_153_a6/
%G ru
%F INTO_2018_153_a6
B. E. Kanguzhin. Operators Whose Resolvents Have Convolution Representations and Their Spectral Analysis. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 94-107. http://geodesic.mathdoc.fr/item/INTO_2018_153_a6/

[1] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[2] Dezin A. A., “Differentsialno-operatornye uravneniya. Metod modelnykh operatorov v teorii granichnykh zadach”, Tr. MIAN, v. 229, Nauka, M., 2000, 3–175

[3] Ionkin N. I., “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differ. uravn., 13:2 (1977), 294–304 | MR | Zbl

[4] Kanguzhin B. E., Gani S. N., “Svertki, porozhdaemye differentsialnymi operatorami na otrezke”, Izv. NAN RK. Ser. fiz.-mat., 2004, no. 1, 29–33 | MR

[5] Kanguzhin B. E., Ruzhanskii M. E., Tokmagambetov N. E., “O svertkakh v gilbertovykh prostranstvakh”, Funkts. analiz i ego pril., 51:1 (2017), 77–80 | DOI | MR | Zbl

[6] Kanguzhin B. E., Tokmagambetov N. E., “Svertka, preobrazovanie Fure i prostranstva Soboleva, porozhdaemye nelokalnoi zadachei Ionkina”, Ufim. mat. zh., 7:4 (2015), 80–92

[7] Kokebaev B. K., Otelbaev M., Shynybekov A. N., “K voprosam rasshirenii i suzhenii operatorov”, Dokl. AN SSSR, 271:6 (1983), 1307–1313 | MR

[8] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[9] Shkalikov A. A., “O bazisnosti sobstvennykh funktsii obyknovennykh differentsialnykh operatorov s integralnymi kraevymi usloviyami”, Vestn. MGU. Ser. 1. Mat. Mekh., 1982, no. 6, 12–21 | Zbl

[10] Bozhinov N., Convolutional representations of commutants and multipliers, Bulg. Acad. Sci., Sofia, 1988 | MR | Zbl

[11] Delgado J., Ruzhansky M., Tokmagambetov N., “Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary”, J. Math. Pures Appl., 107 (2017), 758–783 | DOI | MR | Zbl

[12] Kanguzhin B., Tokmagambetov N., “The Fourier transform and convolutions generated by a differential operator with boundary condition on a segment”, Fourier Analysis: Trends in Mathematics, Springer-Verlag, 2014, 235–251 | DOI | MR | Zbl

[13] Riesz F., Sz.-Nagy B., Functional analysis, Dover, 1990 | MR | Zbl

[14] Ruzhansky M., Tokmagambetov N., “Nonharmonic analysis of boundary-value problems”, Int. Math. Res. Notes, 12 (2016), 3548–3615 | DOI | MR | Zbl

[15] Ruzhansky M., Tokmagambetov N., “Very weak solutions of wave equation for Landau Hamiltonian with irregular electromagnetic field”, Lett. Math. Phys., 107:2-17, 591–618 | MR | Zbl

[16] Saitoh S., Sawano Y., Theory of reproducing kernels and applications, Springer, 2016 | MR | Zbl