Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_153_a6, author = {B. E. Kanguzhin}, title = {Operators {Whose} {Resolvents} {Have} {Convolution} {Representations} and {Their} {Spectral} {Analysis}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {94--107}, publisher = {mathdoc}, volume = {153}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_153_a6/} }
TY - JOUR AU - B. E. Kanguzhin TI - Operators Whose Resolvents Have Convolution Representations and Their Spectral Analysis JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 94 EP - 107 VL - 153 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_153_a6/ LA - ru ID - INTO_2018_153_a6 ER -
%0 Journal Article %A B. E. Kanguzhin %T Operators Whose Resolvents Have Convolution Representations and Their Spectral Analysis %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 94-107 %V 153 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_153_a6/ %G ru %F INTO_2018_153_a6
B. E. Kanguzhin. Operators Whose Resolvents Have Convolution Representations and Their Spectral Analysis. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 94-107. http://geodesic.mathdoc.fr/item/INTO_2018_153_a6/
[1] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR
[2] Dezin A. A., “Differentsialno-operatornye uravneniya. Metod modelnykh operatorov v teorii granichnykh zadach”, Tr. MIAN, v. 229, Nauka, M., 2000, 3–175
[3] Ionkin N. I., “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differ. uravn., 13:2 (1977), 294–304 | MR | Zbl
[4] Kanguzhin B. E., Gani S. N., “Svertki, porozhdaemye differentsialnymi operatorami na otrezke”, Izv. NAN RK. Ser. fiz.-mat., 2004, no. 1, 29–33 | MR
[5] Kanguzhin B. E., Ruzhanskii M. E., Tokmagambetov N. E., “O svertkakh v gilbertovykh prostranstvakh”, Funkts. analiz i ego pril., 51:1 (2017), 77–80 | DOI | MR | Zbl
[6] Kanguzhin B. E., Tokmagambetov N. E., “Svertka, preobrazovanie Fure i prostranstva Soboleva, porozhdaemye nelokalnoi zadachei Ionkina”, Ufim. mat. zh., 7:4 (2015), 80–92
[7] Kokebaev B. K., Otelbaev M., Shynybekov A. N., “K voprosam rasshirenii i suzhenii operatorov”, Dokl. AN SSSR, 271:6 (1983), 1307–1313 | MR
[8] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969
[9] Shkalikov A. A., “O bazisnosti sobstvennykh funktsii obyknovennykh differentsialnykh operatorov s integralnymi kraevymi usloviyami”, Vestn. MGU. Ser. 1. Mat. Mekh., 1982, no. 6, 12–21 | Zbl
[10] Bozhinov N., Convolutional representations of commutants and multipliers, Bulg. Acad. Sci., Sofia, 1988 | MR | Zbl
[11] Delgado J., Ruzhansky M., Tokmagambetov N., “Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary”, J. Math. Pures Appl., 107 (2017), 758–783 | DOI | MR | Zbl
[12] Kanguzhin B., Tokmagambetov N., “The Fourier transform and convolutions generated by a differential operator with boundary condition on a segment”, Fourier Analysis: Trends in Mathematics, Springer-Verlag, 2014, 235–251 | DOI | MR | Zbl
[13] Riesz F., Sz.-Nagy B., Functional analysis, Dover, 1990 | MR | Zbl
[14] Ruzhansky M., Tokmagambetov N., “Nonharmonic analysis of boundary-value problems”, Int. Math. Res. Notes, 12 (2016), 3548–3615 | DOI | MR | Zbl
[15] Ruzhansky M., Tokmagambetov N., “Very weak solutions of wave equation for Landau Hamiltonian with irregular electromagnetic field”, Lett. Math. Phys., 107:2-17, 591–618 | MR | Zbl
[16] Saitoh S., Sawano Y., Theory of reproducing kernels and applications, Springer, 2016 | MR | Zbl