On the Davies Formula for the Distribution of Eigenvalues of a Non-Self-Adjoint Differential Operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 84-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we analyze conditions under which the spectrum of the Sturm–Liouville operator on a certain smooth curve is localized near a countable number of rays. In the case where the potential is piecewise analytical, an asymptotic of eigenvalues is found for each series localized near the corresponding ray. The result obtained allows one to generalize the well-known formula for the asymptotic of the distribution function of the spectrum stated by Davies in the case of a finite number of localization rays.
Keywords: non-self-adjoint differential operator, spectral stability, localization of spectrum.
@article{INTO_2018_153_a5,
     author = {Kh. K. Ishkin and A. V. Rezbayev},
     title = {On the {Davies} {Formula} for the {Distribution} of {Eigenvalues} of a {Non-Self-Adjoint} {Differential} {Operator}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {84--93},
     publisher = {mathdoc},
     volume = {153},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_153_a5/}
}
TY  - JOUR
AU  - Kh. K. Ishkin
AU  - A. V. Rezbayev
TI  - On the Davies Formula for the Distribution of Eigenvalues of a Non-Self-Adjoint Differential Operator
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 84
EP  - 93
VL  - 153
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_153_a5/
LA  - ru
ID  - INTO_2018_153_a5
ER  - 
%0 Journal Article
%A Kh. K. Ishkin
%A A. V. Rezbayev
%T On the Davies Formula for the Distribution of Eigenvalues of a Non-Self-Adjoint Differential Operator
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 84-93
%V 153
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_153_a5/
%G ru
%F INTO_2018_153_a5
Kh. K. Ishkin; A. V. Rezbayev. On the Davies Formula for the Distribution of Eigenvalues of a Non-Self-Adjoint Differential Operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 84-93. http://geodesic.mathdoc.fr/item/INTO_2018_153_a5/

[1] Ishkin Kh. K., “O neobkhodimykh usloviyakh lokalizatsii spektra zadachi Shturma—Liuvillya na krivoi”, Mat. zametki, 78:1 (2005), 72–84 | DOI | MR | Zbl

[2] Ishkin Kh. K., “O kriterii bezmonodromnosti uravneniya Shturma—Liuvillya”, Mat. zametki, 94:4 (2013), 552–568 | DOI | MR | Zbl

[3] Ishkin Kh. K., “Kriterii lokalizatsii spektra operatora Shturma—Liuvillya na krivoi”, Algebra i analiz, 28:1 (2016), 52–88 | MR

[4] Levin B. Ya., Raspredeleniya kornei tselykh funktsii, GITTL, M., 1956

[5] Levitan B. M., Sargsyan I. S., Operatory Shturma—Liuvillya i Diraka, Nauka, M., 1988 | MR

[6] Lidskii V. B., Sadovnichii V. A., “Regulyarizovannye summy kornei odnogo klassa tselykh funktsii”, Funkts. anal. prilozh., 1:2 (1967), 52–59 | MR | Zbl

[7] Markushevich A. I., Teoriya analiticheskikh funktsii, v. 1, Nauka, M., 1978 | MR

[8] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[9] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.-L., 1950 | MR

[10] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. 1, IL, M., 1960

[11] Davies E. B., Spectral theory and differential operators, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[12] Davies E. B., “Eigenvalues of an elliptic system”, Math. Z., 243 (2003), 719–743 | DOI | MR | Zbl

[13] Duistermaat J. J., Grünbaum F. A., “Differential equations in the spectral parameter”, Commun. Math. Phys., 103 (1986), 177–240 | DOI | MR | Zbl