Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_153_a4, author = {A. A. Ismagilov and A. V. Kayumova and I. R. Kayumov and S. Ponnusamy}, title = {Bohr {Inequalities} in {Some} {Classes} of {Analytic} {Functions}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {69--83}, publisher = {mathdoc}, volume = {153}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_153_a4/} }
TY - JOUR AU - A. A. Ismagilov AU - A. V. Kayumova AU - I. R. Kayumov AU - S. Ponnusamy TI - Bohr Inequalities in Some Classes of Analytic Functions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 69 EP - 83 VL - 153 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_153_a4/ LA - ru ID - INTO_2018_153_a4 ER -
%0 Journal Article %A A. A. Ismagilov %A A. V. Kayumova %A I. R. Kayumov %A S. Ponnusamy %T Bohr Inequalities in Some Classes of Analytic Functions %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 69-83 %V 153 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_153_a4/ %G ru %F INTO_2018_153_a4
A. A. Ismagilov; A. V. Kayumova; I. R. Kayumov; S. Ponnusamy. Bohr Inequalities in Some Classes of Analytic Functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex analysis, Tome 153 (2018), pp. 69-83. http://geodesic.mathdoc.fr/item/INTO_2018_153_a4/
[1] Goluzin G. M., “O podchinennykh odnolistnykh funktsiyakh”, Tr. MIAN SSSR, v. 38, Izd-vo AN SSSR, M., 1951, 68–71 | MR
[2] Abu-Muhanna Y., “Bohr's phenomenon in subordination and bounded harmonic classes”, Complex Var. Elliptic Equ., 55:11 (2010), 1071–1078 | DOI | MR | Zbl
[3] Abu-Muhanna Y., Ali R. M., “Bohr's phenomenon for analytic functions into the exterior of a compact convex body”, J. Math. Anal. Appl., 379:2 (2011), 512–517 | DOI | MR | Zbl
[4] Abu-Muhanna Y., Ali R. M., Ng Z. C., Hasni S. F. M., “Bohr radius for subordinating families of analytic functions and bounded harmonic mappings”, J. Math. Anal. Appl., 420:1 (2014), 124–136 | DOI | MR | Zbl
[5] Ali R. M., Abu-Muhanna Y., Ponnusamy S., “On the Bohr inequality”, Progress in Approximation Theory and Applicable Complex Analysis, Springer Optimization and Its Applications, v. 117, 2016, 265–295 | MR
[6] Ali R. M., Barnard R. W., Solynin A. Yu., “A note on the Bohr's phenomenon for power series”, J. Math. Anal. Appl., 449:1 (2017), 154–167 | DOI | MR | Zbl
[7] Aizenberg L., “Generalization of results about the Bohr radius for power series”, Stud. Math., 180 (2007), 161–168 | DOI | MR | Zbl
[8] Anderson J. M., Clunie J. G., Pommerenke C., “On Bloch functions and normal functions”, J. Reine Angew. Math., 270 (1974), 12–37 | MR | Zbl
[9] Avkhadiev F. G., Wirths K.-J., Schwarz–Pick type inequalities, Birkhäuser-Verlag, Basel–Boston–Berlin, 2009 | MR | Zbl
[10] Bénéteau C., Dahlner A., Khavinson D., “Remarks on the Bohr phenomenon”, Comput. Methods Funct. Theory, 4:1 (2004), 1–19 | DOI | MR
[11] Boas H. P., “Majorant series”, Korean Math. Soc., 37:2 (2000), 321–337 | MR | Zbl
[12] Boas H. P., Khavinson D., “Bohr's power series theorem in several variables”, Proc. Am. Math. Soc., 125:10 (1997), 2975–2979 | DOI | MR | Zbl
[13] Boas H. P., Khavinson D., “Vita: Friedrich Wilhelm Wiener”, Math. Intelligencer, 22 (2000), 73–75 | DOI | MR | Zbl
[14] Bohr H., “A theorem concerning power series”, Proc. London Math. Soc., 13:2 (1914), 1–5 | DOI | MR | Zbl
[15] Colonna F., “The Bloch constant of bounded harmonic mappings”, Indiana Univ. Math. J., 38 (1989), 829–840 | DOI | MR | Zbl
[16] Duren P. L., Univalent functions, Springer-Verlag, New York, 1983 | MR | Zbl
[17] Chen Sh., Ponnusamy S., Wang X., “Landau theorem and Marden constant for harmonic $\nu$-bloch mappings”, Bull. Austr. Math. Soc., 84 (2011), 19–32 | DOI | MR | Zbl
[18] Chen Sh., Ponnusamy S., Wang X., “Coefficient estimates and Landau–Bloch theorem for planar harmonic mappings”, Bull. Malaysian Math. Sci. Soc., 34:2 (2011), 255–265 | MR | Zbl
[19] Chen Sh., Ponnusamy S., Wang X., “Landau–Bloch constants for functions in $\alpha$-Bloch spaces and Hardy spaces”, Complex Anal. Oper. Theory, 6 (2012), 1025–1036 | DOI | MR | Zbl
[20] Kayumov I. R., Ponnusamy S., “Bohr inequality for odd analytic functions”, Comput. Methods Funct. Theory, 17:4 (2017), 679–688 | DOI | MR | Zbl
[21] Kayumov I. R., Ponnusamy S., Bohr's inequality for analytic functions $\smash[b]{\sum\limits_k} b_k z^{kp+m}$ and harmonic functions, arXiv: 1708.05578 [math.CV] | MR
[22] Kayumov I. R., Ponnusamy S., Bohr–Rogosinski radius for analytic functions, arXiv: 1708.05585 [math.CV]
[23] Kayumov I. R., Ponnusamy S., Shakirov N., “Bohr radius for locally univalent harmonic mappings”, Math. Nachr., 291:11-12 (2018), 1757–1768 | DOI | MR | Zbl
[24] Landau E., Gaier D., Darstellung und Begrüundung einiger neuerer Ergebnisse der Funktionentheorie, Springer-Verlag, Berlin, 1986 | MR
[25] Liu G., Ponnusamy S., On harmonic $\nu$-Bloch and $\nu$-Bloch-type mappings, arXiv: 1707.01570 [math.CV] | MR
[26] Pommerenke C., Boundary behaviour of conformal maps, Springer, New York, 1992 | MR | Zbl
[27] Popescu G., “Multivariable Bohr inequalities”, Trans. Am. Math. Soc., 359:11 (2007), 5283–5317 | DOI | MR | Zbl
[28] Rogosinski W., “Über Bildschranken bei Potenzreihen und ihren Abschnitten”, Math. Z., 17 (1923), 260–276 | DOI | MR | Zbl
[29] Schur I., Szegő G., “Über die Abschnitte einer im Einheitskreise beschränkten Potenzreihe”, Sitz.-Ber. Preuss. Acad. Wiss. Berlin Phys.-Math. Kl., 1925, 545–560 | MR | Zbl