Symmetry Drivers and Formal Integrals of Hyperbolic Systems of Equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 110-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider symmetry drivers (i.e., operators that map arbitrary functions of one of independent variables into symmetries) and formal integrals (i.e., operators that map symmetries to the kernel of the total derivative). We prove that a hyperbolic system of partial differential equations has a complete set of formal integrals if and only if it admits a complete set of symmetry drivers. This assertion is also valid for difference and differential-difference analogs of scalar hyperbolic equations.
Keywords: nonlinear hyperbolic systems, Darboux integrability, higher symmetries, conservation laws and integrals
Mots-clés : Laplace invariants.
@article{INTO_2018_152_a9,
     author = {S. Ya. Startsev},
     title = {Symmetry {Drivers} and {Formal} {Integrals} of {Hyperbolic} {Systems} of {Equations}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {110--119},
     publisher = {mathdoc},
     volume = {152},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a9/}
}
TY  - JOUR
AU  - S. Ya. Startsev
TI  - Symmetry Drivers and Formal Integrals of Hyperbolic Systems of Equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 110
EP  - 119
VL  - 152
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_152_a9/
LA  - ru
ID  - INTO_2018_152_a9
ER  - 
%0 Journal Article
%A S. Ya. Startsev
%T Symmetry Drivers and Formal Integrals of Hyperbolic Systems of Equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 110-119
%V 152
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_152_a9/
%G ru
%F INTO_2018_152_a9
S. Ya. Startsev. Symmetry Drivers and Formal Integrals of Hyperbolic Systems of Equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 110-119. http://geodesic.mathdoc.fr/item/INTO_2018_152_a9/

[1] Zhiber A. V., Sokolov V. V., “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, Usp. mat. nauk, 56:1 (337) (2001), 63–106 | DOI | MR | Zbl

[2] Zhiber A. V., Startsev S. Ya., “Integraly, resheniya i suschestvovanie preobrazovanii Laplasa lineinoi giperbolicheskoi sistemy uravnenii”, Mat. zametki, 74:6 (2003), 848–857 | DOI | MR | Zbl

[3] Zhiber A. V., Shabat A. B., “Uravneniya Kleina—Gordona s netrivialnoi gruppoi”, Dokl. AN SSSR, 247:5 (1979), 1103–1107 | MR

[4] Sokolov V. V., Startsev S. Ya., “Simmetrii nelineinykh giperbolicheskikh sistem tipa tsepochek Tody”, Teor. mat. fiz., 155:2 (2008), 344–355 | DOI | MR | Zbl

[5] Startsev S. Ya., “O differentsialnykh podstanovkakh tipa preobrazovaniya Miury”, Teor. mat. fiz., 116:3 (1998), 336–348 | DOI | MR | Zbl

[6] Startsev S. Ya., “Metod kaskadnogo integrirovaniya Laplasa dlya lineinykh giperbolicheskikh sistem uravnenii”, Mat. zametki, 83:1 (2008), 107–118 | DOI | MR | Zbl

[7] Trikomi F., Lektsii po uravneniyam v chastnykh proizvodnykh, IL, M., 1957

[8] Anderson I. M., Juráš M., “Generalized Laplace invariants and the method of Darboux”, Duke Math. J., 89:2 (1997), 351–375 | DOI | MR | Zbl

[9] Anderson I. M., Kamran N., “The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane”, Duke Math. J., 87:2 (1997), 265–319 | DOI | MR | Zbl

[10] Sokolov V. V., Zhiber A. V., “On the Darboux integrable hyperbolic equations”, Phys. Let. A., 20 (1995), 303–308 | DOI | MR

[11] Startsev S. Ya., “Formal integrals and Noether operators of nonlinear hyperbolic partial differential systems admitting a rich set of symmetries”, SIGMA, 13 (2017), 034 | MR | Zbl

[12] Startsev S. Ya., On relationships between symmetries depending on arbitrary functions and integrals of discrete equations, arXiv: 1611.02235 [nlin.SI] | MR