Some Properties of Extremals of the Functional of Potential Energy
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 103-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss stability and instability criteria for extremal surfaces of a special functional, which is a linear combination of an area-type functional and the functional of volumetric force density. Extremals of such functionals can serve as models of physically equilibrium tents or liquids in potential gravitational fields, so that the problem of their stability or instability is very topical. Our results are based on various geometric properties of surfaces; they are obtained by methods developed by V. M. Miklyukov and V. A. Klyachin.
Keywords: variation of functional, extremal surface, extremal of surface, area-type functional, functional of volumetric force density, functional of potential energy, stability, instability, base frequency.
Mots-clés : Jacobi equation
@article{INTO_2018_152_a8,
     author = {N. M. Poluboyarova},
     title = {Some {Properties} of {Extremals} of the {Functional} of {Potential} {Energy}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {103--109},
     publisher = {mathdoc},
     volume = {152},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a8/}
}
TY  - JOUR
AU  - N. M. Poluboyarova
TI  - Some Properties of Extremals of the Functional of Potential Energy
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 103
EP  - 109
VL  - 152
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_152_a8/
LA  - ru
ID  - INTO_2018_152_a8
ER  - 
%0 Journal Article
%A N. M. Poluboyarova
%T Some Properties of Extremals of the Functional of Potential Energy
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 103-109
%V 152
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_152_a8/
%G ru
%F INTO_2018_152_a8
N. M. Poluboyarova. Some Properties of Extremals of the Functional of Potential Energy. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 103-109. http://geodesic.mathdoc.fr/item/INTO_2018_152_a8/

[1] Gelfand I. M., Lektsii po lineinoi algebre, Nauka, M., 1971 | MR

[2] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983

[3] Klyachin V. A., Medvedeva N. M., “Ob ustoichivosti ekstremalnykh poverkhnostei nekotorykh funktsionalov tipa ploschadi”, Sib. elektr. mat. izv., 4 (2007), 113–132 | Zbl

[4] Klyachin V. A., Miklyukov V. M., “Maksimalnye giperpoverkhnosti trubchatogo tipa v prostranstve Minkovskogo”, Izv. AN SSSR. Ser. mat., 55:1 (1991), 206–217 | MR

[5] Klyachin V. A., “O nekotorykh svoistvakh ustoichivykh i neustoichivykh poverkhnostei predpisannoi srednei krivizny”, Izv. RAN. Ser. mat., 70:4 (2006), 77–90 | DOI | MR | Zbl

[6] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii. 1, Nauka, M., 1981 | MR

[7] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii. 2, Nauka, M., 1981 | MR

[8] Pogorelov A. V., “Ob ustoichivosti minimalnykh poverkhnostei”, Dokl. AN SSSR, 260:2 (1981), 293–295 | MR | Zbl

[9] Poluboyarova N. M., “Uravneniya ekstremalei funktsionala potentsialnoi energii”, Vestn. VolGU. Ser. 1. Mat. Fiz., 2016, no. 5 (36), 60–72 | MR

[10] Saranin V. A., Ravnovesie zhidkostei i ego ustoichivost, In-t kompyut. issl., M., 2002

[11] Tuzhilin A. A., Fomenko A. T., Elementy geometrii i topologii minimalnykh poverkhnostei, Nauka, M., 1991 | MR

[12] Finn R., Ravnovesnye kapillyarnye poverkhnosti. Matematicheskaya teoriya, Mir, M., 1989

[13] Fomenko A. T., “O skorosti rosta i naimenshikh ob'emakh globalno minimalnykh poverkhnostei v kobordizmakh”, Tr. semin. po vekt. i tenz. anal., 21 (1985), 3–12

[14] Barbosa J. L., do Carmo M., “Stability of minimal surfaces and eigevalues of the Laplacian”, Math. Z., 173:1 (1980), 13–28 | DOI | MR | Zbl

[15] do Carmo M., Peng C. K., “The stable minimal surfaces in $\mathbb{R}^3$ are planes”, Bull. Am. Math. Soc. (New Ser.), 1:6 (1979), 903–906 | DOI | MR | Zbl

[16] Hoffman D., Osserman R., “The area of generalized Gaussian image and the stability of minimal surfaces in $S^n$ and $R^n$”, Math. Ann., 260 (1982), 437—452 | DOI | MR | Zbl

[17] Lawson H. B., “Some intrinsic characterizations of minimal surfaces”, J. Anal. Math., 24 (1971), 151–161 | DOI | MR | Zbl

[18] Simons J., “Minimal varieties in riemannian manifolds”, Ann. Math., 88:1 (1968), 62–105 | DOI | MR | Zbl