Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_152_a6, author = {Yu. A. Kordyukov}, title = {Laplacians on {Smooth} {Distributions} as $C^*${-Algebra} {Multipliers}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {67--90}, publisher = {mathdoc}, volume = {152}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a6/} }
TY - JOUR AU - Yu. A. Kordyukov TI - Laplacians on Smooth Distributions as $C^*$-Algebra Multipliers JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 67 EP - 90 VL - 152 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_152_a6/ LA - ru ID - INTO_2018_152_a6 ER -
%0 Journal Article %A Yu. A. Kordyukov %T Laplacians on Smooth Distributions as $C^*$-Algebra Multipliers %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 67-90 %V 152 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_152_a6/ %G ru %F INTO_2018_152_a6
Yu. A. Kordyukov. Laplacians on Smooth Distributions as $C^*$-Algebra Multipliers. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 67-90. http://geodesic.mathdoc.fr/item/INTO_2018_152_a6/
[1] Kordyukov Yu. A., “Teoriya indeksa i nekommutativnaya geometriya na mnogoobraziyakh so sloeniem”, Usp. mat. nauk, 64:2 (386) (2009), 73–202 | DOI | MR | Zbl
[2] Kordyukov Yu. A., “Laplasiany na gladkikh raspredeleniyakh”, Mat. sb., 208:10 (2017), 91–112 | DOI | MR | Zbl
[3] Manuilov V. M., Troitskii E. V., $C^*$-Gilbertovy moduli, Faktorial Press, M., 2001
[4] Androulidakis I., “Laplacians and spectrum for singular foliations”, Chin. Ann. Math. Ser. B., 35:5 (2014), 679–690 | DOI | MR | Zbl
[5] Androulidakis I., Skandalis G., “The holonomy groupoid of a singular foliation”, J. Reine Angew. Math., 626 (2009), 1–37 | DOI | MR | Zbl
[6] Androulidakis I., Skandalis G., “Pseudodifferential calculus on a singular foliation”, J. Noncommut. Geom., 5:1 (2011), 125–152 | DOI | MR | Zbl
[7] Baaj S., Multiplicateurs non bornès, Ph.D. thesis, Univ. Pierre et Marie Curie, Paris, 1980
[8] Baaj S., Julg P., “Théorie bivariante de {K}asparov et opérateurs non bornés dans les $C^{\ast}$-modules hilbertiens”, C. R. Acad. Sci. Paris. Sér. I Math., 296:21 (1983), 875–878 | MR | Zbl
[9] Chernoff P., “Essential self-adjointness of powers of generators of hyperbolic equations”, J. Funct. Anal., 12 (1973), 401–414 | DOI | MR | Zbl
[10] Connes A., “Sur la théorie non commutative de l'intégration”, Lect. Notes Math., 725 (1979), 19–143 | DOI | MR | Zbl
[11] Connes A., A survey of foliations and operator algebras, Am. Math. Soc., Providence, Rhode Island, 1982 | MR | Zbl
[12] Fack T., Skandalis G., “Sur les représentations et idéaux de la $C^{\ast}$-algèbre d'un feuilletage”, J. Operator Theory, 8:1 (1982), 95–129 | MR | Zbl
[13] Folland G. B., “Subelliptic estimates and function spaces on nilpotent Lie groups”, Ark. Mat., 13:2 (1975), 161–207 | DOI | MR | Zbl
[14] Grigor'yan A., “Heat kernels on weighted manifolds and applications”, The Ubiquitous Heat Kernel, Contemp. Math., 398, Am. Math. Soc., Providence, Rhode Island, 2006, 93–191 | DOI | MR | Zbl
[15] Hörmander L., “Hypoelliptic second-order differential equations”, Acta Math., 119 (1967), 147–171 | DOI | MR
[16] Hörmander L., Melin A., “Free systems of vector fields”, Ark. Mat., 16:1 (1978), 83–88 | DOI | MR | Zbl
[17] Kordyukov Yu. A., “Functional calculus for tangentially elliptic operators on foliated manifolds”, Analysis and geometry in foliated manifolds, World Scientific, River Edge, New Jersey, 1995, 113–136 | MR | Zbl
[18] Kordyukov Yu. A., “Noncommutative geometry of foliations”, J. K-Theory, 2:2 (2008), 219–327 | DOI | MR | Zbl
[19] Lance E. C., Hilbert $C^*$-modules. A toolkit for operator algebraists, Cambridge Univ. Press, Cambridge, 1995 | MR
[20] Montgomery R., A tour of subriemannian geometries, their geodesics and applications, Am. Math. Soc., Providence, Rhode Island, 2002 | MR | Zbl
[21] Renault J., “A groupoid approach to $C\sp{\ast} $-algebras”, Lect. Notes Math., v. 793, Springer-Verlag, Berlin, 1980 | DOI | MR | Zbl
[22] Rothschild L. P., Stein E. M., “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137:3-4 (1976), 247–320 | DOI | MR
[23] Stefan P., “Accessible sets, orbits, and foliations with singularities”, Proc. London Math. Soc. (3), 29 (1974), 699–713 | DOI | MR | Zbl
[24] Sussmann H. J., “Orbits of families of vector fields and integrability of distributions”, Trans. Am. Math. Soc., 180 (1973), 171–188 | DOI | MR | Zbl
[25] Vassout S., “Unbounded pseudodifferential calculus on Lie groupoids”, J. Funct. Anal., 236:1 (2006), 161–200 | DOI | MR | Zbl