Laplacians on Smooth Distributions as $C^*$-Algebra Multipliers
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 67-90

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we continue the study of spectral properties of Laplacians associated with an arbitrary smooth distribution on a compact manifold started in a previous paper. Under the assumption that the singular foliation generated by the distribution is smooth, we prove that the Laplacian associated with the distribution defines an unbounded, regular, self-adjoint operator in some Hilbert module over the $C^*$-algebra of the foliation.
Mots-clés : foliation, multiplier.
Keywords: Hilbert module, Laplacian, hypoelliptic operator, smooth distribution
@article{INTO_2018_152_a6,
     author = {Yu. A. Kordyukov},
     title = {Laplacians on {Smooth} {Distributions} as $C^*${-Algebra} {Multipliers}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {67--90},
     publisher = {mathdoc},
     volume = {152},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a6/}
}
TY  - JOUR
AU  - Yu. A. Kordyukov
TI  - Laplacians on Smooth Distributions as $C^*$-Algebra Multipliers
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 67
EP  - 90
VL  - 152
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_152_a6/
LA  - ru
ID  - INTO_2018_152_a6
ER  - 
%0 Journal Article
%A Yu. A. Kordyukov
%T Laplacians on Smooth Distributions as $C^*$-Algebra Multipliers
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 67-90
%V 152
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_152_a6/
%G ru
%F INTO_2018_152_a6
Yu. A. Kordyukov. Laplacians on Smooth Distributions as $C^*$-Algebra Multipliers. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 67-90. http://geodesic.mathdoc.fr/item/INTO_2018_152_a6/