On a Certain Class of Hyperbolic Equations with Second-order Integrals
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 46-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine a special class of nonlinear hyperbolic equations possessing a second-order $y$-integral. We clarify the structure of $x$-integrals and prove that they are $x$-integrals of a hyperbolic equation with a first-order $y$-integral. We also prove that this class contains the well-known Laine equation.
Mots-clés : Liouville-type equations
Keywords: differential substitutions, $x$- and $y$-integrals.
@article{INTO_2018_152_a4,
     author = {A. V. Zhiber and A. M. Yur'eva},
     title = {On a {Certain} {Class} of {Hyperbolic} {Equations} with {Second-order} {Integrals}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {46--52},
     publisher = {mathdoc},
     volume = {152},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a4/}
}
TY  - JOUR
AU  - A. V. Zhiber
AU  - A. M. Yur'eva
TI  - On a Certain Class of Hyperbolic Equations with Second-order Integrals
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 46
EP  - 52
VL  - 152
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_152_a4/
LA  - ru
ID  - INTO_2018_152_a4
ER  - 
%0 Journal Article
%A A. V. Zhiber
%A A. M. Yur'eva
%T On a Certain Class of Hyperbolic Equations with Second-order Integrals
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 46-52
%V 152
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_152_a4/
%G ru
%F INTO_2018_152_a4
A. V. Zhiber; A. M. Yur'eva. On a Certain Class of Hyperbolic Equations with Second-order Integrals. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 46-52. http://geodesic.mathdoc.fr/item/INTO_2018_152_a4/

[1] Zhiber A. V., Sokolov V. V., “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, Usp. mat. nauk, 56:1 (337) (2001), 63–106 | DOI | MR | Zbl

[2] Zhiber A. V., Yureva A. M., “Giperbolicheskie uravneniya liuvillevskogo tipa spetsialnogo klassa”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 137 (2017), 17–25 | MR

[3] Kaptsov O. V., Metody integrirovaniya uravnenii s chastnymi proizvodnymi, Fizmatlit, M., 2009

[4] Kaptsov O. V., “O probleme klassifikatsii Gursa”, Programmirovanie, 2 (2012), 68–71

[5] Laine M. E., “Sur l'application de la methode de Darboux aux equations $s=f(x,y,z,p,q)$”, C. R. Acad. Sci., 182 (1926), 1126–1127 | MR