Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_152_a4, author = {A. V. Zhiber and A. M. Yur'eva}, title = {On a {Certain} {Class} of {Hyperbolic} {Equations} with {Second-order} {Integrals}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {46--52}, publisher = {mathdoc}, volume = {152}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a4/} }
TY - JOUR AU - A. V. Zhiber AU - A. M. Yur'eva TI - On a Certain Class of Hyperbolic Equations with Second-order Integrals JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 46 EP - 52 VL - 152 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_152_a4/ LA - ru ID - INTO_2018_152_a4 ER -
%0 Journal Article %A A. V. Zhiber %A A. M. Yur'eva %T On a Certain Class of Hyperbolic Equations with Second-order Integrals %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 46-52 %V 152 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_152_a4/ %G ru %F INTO_2018_152_a4
A. V. Zhiber; A. M. Yur'eva. On a Certain Class of Hyperbolic Equations with Second-order Integrals. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 46-52. http://geodesic.mathdoc.fr/item/INTO_2018_152_a4/
[1] Zhiber A. V., Sokolov V. V., “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, Usp. mat. nauk, 56:1 (337) (2001), 63–106 | DOI | MR | Zbl
[2] Zhiber A. V., Yureva A. M., “Giperbolicheskie uravneniya liuvillevskogo tipa spetsialnogo klassa”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 137 (2017), 17–25 | MR
[3] Kaptsov O. V., Metody integrirovaniya uravnenii s chastnymi proizvodnymi, Fizmatlit, M., 2009
[4] Kaptsov O. V., “O probleme klassifikatsii Gursa”, Programmirovanie, 2 (2012), 68–71
[5] Laine M. E., “Sur l'application de la methode de Darboux aux equations $s=f(x,y,z,p,q)$”, C. R. Acad. Sci., 182 (1926), 1126–1127 | MR