Existence of Weak Solutions of Aggregation Equation with the $p(\cdot)$-Laplacian
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 34-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an aggregation elliptic-parabolic equation of the form \begin{equation*} b(u)_t=\operatorname{div}\Big( |\nabla u|^{p(x)-2}\nabla u-b(u)G(u)\Big)+\gamma(x,b(u)), \end{equation*} where $b$ is a nondecreasing function and $G(u)$ is an integral operator. The condition on the boundary of a bounded domain $\Omega$ ensures that the mass of the population $\int u(x,t)dx=\operatorname{const}$ is preserved for $\gamma=0$. The existence of a weak solution of the problem with a nonnegative bounded initial function in the cylinder $\Omega\times(0,T)$ is proved. A formula for the guaranteed time $T$ for the existence of the solution is obtained.
Keywords: aggregation equation, $p(\cdot)$-Laplacian
Mots-clés : existence of solution.
@article{INTO_2018_152_a3,
     author = {V. F. Vil'danova and F. Kh. Mukminov},
     title = {Existence of {Weak} {Solutions} of {Aggregation} {Equation} with the $p(\cdot)${-Laplacian}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {34--45},
     publisher = {mathdoc},
     volume = {152},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a3/}
}
TY  - JOUR
AU  - V. F. Vil'danova
AU  - F. Kh. Mukminov
TI  - Existence of Weak Solutions of Aggregation Equation with the $p(\cdot)$-Laplacian
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 34
EP  - 45
VL  - 152
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_152_a3/
LA  - ru
ID  - INTO_2018_152_a3
ER  - 
%0 Journal Article
%A V. F. Vil'danova
%A F. Kh. Mukminov
%T Existence of Weak Solutions of Aggregation Equation with the $p(\cdot)$-Laplacian
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 34-45
%V 152
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_152_a3/
%G ru
%F INTO_2018_152_a3
V. F. Vil'danova; F. Kh. Mukminov. Existence of Weak Solutions of Aggregation Equation with the $p(\cdot)$-Laplacian. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 34-45. http://geodesic.mathdoc.fr/item/INTO_2018_152_a3/

[1] Alkhutov Yu. A., Zhikov V. V., “Teoremy suschestvovaniya i edinstvennosti reshenii parabolicheskikh uravnenii s peremennym poryadkom nelineinosti”, Mat. sb., 205:3 (2014), 3–14 | DOI | MR | Zbl

[2] Belyakov A. O., Davydov A. A., “Optimizatsiya effektivnosti tsiklicheskogo ispolzovaniya vozobnovlyaemogo resursa”, Tr. in-ta mat. mekh. UrO RAN, 22:2 (2016), 38–46

[3] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[4] Mukminov F. Kh., “Edinstvennost renormalizovannogo resheniya elliptiko-parabolicheskoi zadachi v anizotropnykh prostranstvakh Soboleva––Orlicha”, Mat. sb., 208:8 (2017), 106–125 | DOI | MR | Zbl

[5] Alt H. W., Luckhaus S., “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183 (1983), 311–341 | DOI | MR | Zbl

[6] Bertozzi A., Slepcev D., “Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion”, Commun. Pur. Appl. Anal., 9:6 (2010), 1617–1637 | DOI | MR | Zbl

[7] Blanchet A., Carrillo J. A., Laurencot P., “Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions”, Calc. Var., 35 (2009), 133–168 | DOI | MR | Zbl

[8] Boi S., Capasso V., Morale D., “Modeling the aggregative behavior of ants of the species polyergus rufescens”, Nonlin. Anal. Real World Appl., 1 (2000), 163–176 | DOI | MR | Zbl

[9] Burger M., Fetecau R. C., Huang Y., “Stationary states and asymptotic behaviour of aggregation models with nonlinear local repulsion”, SIAM J. Appl. Dynam. Syst., 13:1 (2014), 397–424 | DOI | MR | Zbl

[10] Carrillo J. A., Hittmeir S., Volzone B., Yao Y., Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics, arXiv: 1603.07767 [math.AP] | MR

[11] Eftimie R., Vries G., Lewis M. A., Lutscher F., “Modeling group formation and activity patterns in self-organizing collectives of individuals”, Bull. Math. Biol., 146:69 (2007), 1537–1565 | DOI | MR

[12] Milewski P. A., Yang X., “A simple modelfor biological aggregation with asymmetric sensing”, Commun. Math. Sci., 6 (2008), 397–416 | DOI | MR | Zbl

[13] Morale D., Capasso V., Oelschlager K., “An interacting particle system modelling aggregation behavior: from individuals to populations”, J. Math. Biol., 50 (2005), 49–66 | DOI | MR | Zbl

[14] Otto F., “$L^1$-Contraction and uniqueness for quasilinear elliptic-parabolic equations”, J. Differ. Equations, 131 (1996), 20–38 | DOI | MR | Zbl

[15] Topaz C. M.,Bertozzi A. L., “Swarming patterns in a two-dimensional kinematic model for biological groups”, SIAM J. Appl. Math., 65 (2004), 152–174 | DOI | MR | Zbl

[16] Topaz C. M., Bertozzi A. L., Lewis M. A., “A nonlocal continuum model for biological aggregation”, Bull. Math. Biol., 68 (2006), 1601–-1623 | DOI | MR | Zbl