Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_152_a3, author = {V. F. Vil'danova and F. Kh. Mukminov}, title = {Existence of {Weak} {Solutions} of {Aggregation} {Equation} with the $p(\cdot)${-Laplacian}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {34--45}, publisher = {mathdoc}, volume = {152}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a3/} }
TY - JOUR AU - V. F. Vil'danova AU - F. Kh. Mukminov TI - Existence of Weak Solutions of Aggregation Equation with the $p(\cdot)$-Laplacian JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 34 EP - 45 VL - 152 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_152_a3/ LA - ru ID - INTO_2018_152_a3 ER -
%0 Journal Article %A V. F. Vil'danova %A F. Kh. Mukminov %T Existence of Weak Solutions of Aggregation Equation with the $p(\cdot)$-Laplacian %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 34-45 %V 152 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_152_a3/ %G ru %F INTO_2018_152_a3
V. F. Vil'danova; F. Kh. Mukminov. Existence of Weak Solutions of Aggregation Equation with the $p(\cdot)$-Laplacian. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 34-45. http://geodesic.mathdoc.fr/item/INTO_2018_152_a3/
[1] Alkhutov Yu. A., Zhikov V. V., “Teoremy suschestvovaniya i edinstvennosti reshenii parabolicheskikh uravnenii s peremennym poryadkom nelineinosti”, Mat. sb., 205:3 (2014), 3–14 | DOI | MR | Zbl
[2] Belyakov A. O., Davydov A. A., “Optimizatsiya effektivnosti tsiklicheskogo ispolzovaniya vozobnovlyaemogo resursa”, Tr. in-ta mat. mekh. UrO RAN, 22:2 (2016), 38–46
[3] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971
[4] Mukminov F. Kh., “Edinstvennost renormalizovannogo resheniya elliptiko-parabolicheskoi zadachi v anizotropnykh prostranstvakh Soboleva––Orlicha”, Mat. sb., 208:8 (2017), 106–125 | DOI | MR | Zbl
[5] Alt H. W., Luckhaus S., “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183 (1983), 311–341 | DOI | MR | Zbl
[6] Bertozzi A., Slepcev D., “Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion”, Commun. Pur. Appl. Anal., 9:6 (2010), 1617–1637 | DOI | MR | Zbl
[7] Blanchet A., Carrillo J. A., Laurencot P., “Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions”, Calc. Var., 35 (2009), 133–168 | DOI | MR | Zbl
[8] Boi S., Capasso V., Morale D., “Modeling the aggregative behavior of ants of the species polyergus rufescens”, Nonlin. Anal. Real World Appl., 1 (2000), 163–176 | DOI | MR | Zbl
[9] Burger M., Fetecau R. C., Huang Y., “Stationary states and asymptotic behaviour of aggregation models with nonlinear local repulsion”, SIAM J. Appl. Dynam. Syst., 13:1 (2014), 397–424 | DOI | MR | Zbl
[10] Carrillo J. A., Hittmeir S., Volzone B., Yao Y., Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics, arXiv: 1603.07767 [math.AP] | MR
[11] Eftimie R., Vries G., Lewis M. A., Lutscher F., “Modeling group formation and activity patterns in self-organizing collectives of individuals”, Bull. Math. Biol., 146:69 (2007), 1537–1565 | DOI | MR
[12] Milewski P. A., Yang X., “A simple modelfor biological aggregation with asymmetric sensing”, Commun. Math. Sci., 6 (2008), 397–416 | DOI | MR | Zbl
[13] Morale D., Capasso V., Oelschlager K., “An interacting particle system modelling aggregation behavior: from individuals to populations”, J. Math. Biol., 50 (2005), 49–66 | DOI | MR | Zbl
[14] Otto F., “$L^1$-Contraction and uniqueness for quasilinear elliptic-parabolic equations”, J. Differ. Equations, 131 (1996), 20–38 | DOI | MR | Zbl
[15] Topaz C. M.,Bertozzi A. L., “Swarming patterns in a two-dimensional kinematic model for biological groups”, SIAM J. Appl. Math., 65 (2004), 152–174 | DOI | MR | Zbl
[16] Topaz C. M., Bertozzi A. L., Lewis M. A., “A nonlocal continuum model for biological aggregation”, Bull. Math. Biol., 68 (2006), 1601–-1623 | DOI | MR | Zbl