Direct and Inverse Spectral Problems in the Theory of Oscillations of Elastic Plates with Additional Point Interactions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 25-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to a new statement and the study of direct and inverse spectral problems for small linear oscillations of orthotropic plates that carry concentrated masses at a finite set of points, which, in turn, are connected to a stationary base by elastic springs with known stiffness coefficients.
Keywords: inverse spectral problems, differential operators with distribution coefficients, theory of oscillations of elastic plates and shells.
@article{INTO_2018_152_a2,
     author = {N. F. Valeev and \`E. A. Nazirova},
     title = {Direct and {Inverse} {Spectral} {Problems} in the {Theory} of {Oscillations} of {Elastic} {Plates} with {Additional} {Point} {Interactions}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {25--33},
     publisher = {mathdoc},
     volume = {152},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a2/}
}
TY  - JOUR
AU  - N. F. Valeev
AU  - È. A. Nazirova
TI  - Direct and Inverse Spectral Problems in the Theory of Oscillations of Elastic Plates with Additional Point Interactions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 25
EP  - 33
VL  - 152
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_152_a2/
LA  - ru
ID  - INTO_2018_152_a2
ER  - 
%0 Journal Article
%A N. F. Valeev
%A È. A. Nazirova
%T Direct and Inverse Spectral Problems in the Theory of Oscillations of Elastic Plates with Additional Point Interactions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 25-33
%V 152
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_152_a2/
%G ru
%F INTO_2018_152_a2
N. F. Valeev; È. A. Nazirova. Direct and Inverse Spectral Problems in the Theory of Oscillations of Elastic Plates with Additional Point Interactions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 25-33. http://geodesic.mathdoc.fr/item/INTO_2018_152_a2/

[1] Bazarov M. B., Safarov I. I., Shokin Yu. I., Chislennoe modelirovanie kolebanii dissipativno odnorodnykh i neodnorodnykh mekhanicheskikh sistem, Izd-vo SO RAN, Novosibirsk, 1996

[2] Valeev N. F., “Obratnaya spektralnaya zadacha dlya konechnomernykh operatorov”, Ufim. mat. zh., 2:2 (2010), 3–19 | Zbl

[3] Valeev N. F., “Ob odnom spektralnom svoistve irregulyarnykh puchkov”, Ufim. mat. zh., 4:4 (2012), 45–53 | Zbl

[4] Kanguzhin B. E., Nurakhmetov D. B., Tokmagambetov N. E., “Operator Laplasa s $\delta$-podobnymi potentsialami”, Izv. vuzov. Mat., 2014, no. 2, 9–16 | MR | Zbl

[5] Savchuk A. M., Shkalikov A. A., “Operatory Shturma––Liuvillya s singulyarnymi potentsialami”, Mat. zametki, 66:6 (1999), 897–912 | DOI | Zbl

[6] Sadovnichii V. A., Sultanaev Ya. T., Valeev N. F., “Mnogoparametricheskie obratnye spektralnye zadachi i ikh prilozheniya”, Dokl. RAN, 426:4 (2009), 1–4

[7] Shkalikov A. A., “Vozmuscheniya samosopryazhennykh i normalnykh operatorov s diskretnym spektrom”, Usp. mat. nauk, 71:5 (431) (2016), 113–174 | DOI | MR | Zbl

[8] Algazin S. D., “Numerical study of free oscillations of a beam with oscillators”, J. Appl. Mech. Techn. Phys., 47:3 (2006), 433–438 | DOI | MR | Zbl