On the Integrability of a Lattice Equation with Two Continuum Limits
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 159-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a new example of lattice equation being one of the key equations of a recent generalized symmetry classification of five-point differential-difference equations. This equation has two different continuum limits, which are the well-known fifth-order partial-differential equations, namely, the Sawada–Kotera and Kaup–-Kupershmidt equations. We justify its integrability by constructing an $L$-$A$ pair and a hierarchy of conservation laws.
Keywords: differential-difference equation, integrability, conservation law.
Mots-clés : Lax pair
@article{INTO_2018_152_a13,
     author = {R. N. Garifullin and R. I. Yamilov},
     title = {On the {Integrability} of a {Lattice} {Equation} with {Two} {Continuum} {Limits}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {159--164},
     publisher = {mathdoc},
     volume = {152},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a13/}
}
TY  - JOUR
AU  - R. N. Garifullin
AU  - R. I. Yamilov
TI  - On the Integrability of a Lattice Equation with Two Continuum Limits
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 159
EP  - 164
VL  - 152
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_152_a13/
LA  - ru
ID  - INTO_2018_152_a13
ER  - 
%0 Journal Article
%A R. N. Garifullin
%A R. I. Yamilov
%T On the Integrability of a Lattice Equation with Two Continuum Limits
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 159-164
%V 152
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_152_a13/
%G ru
%F INTO_2018_152_a13
R. N. Garifullin; R. I. Yamilov. On the Integrability of a Lattice Equation with Two Continuum Limits. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 159-164. http://geodesic.mathdoc.fr/item/INTO_2018_152_a13/

[1] Adler V. E., “Integriruemye Mebius-invariantnye evolyutsionnye tsepochki vtorogo poryadka”, Funkts. anal. prilozh., 50:4 (2016), 13–25 | DOI | MR | Zbl

[2] Garifullin R. N., Mikhailov A. V., Yamilov R. I., “Diskretnoe uravnenie na kvadratnoi reshetke s nestandartnoi strukturoi vysshikh simmetrii”, Teor. mat. fiz., 180:1 (2014), 17–34 | DOI | Zbl

[3] Drinfeld V. G., Svinolupov S. I., Sokolov V. V., “Klassifikatsiya evolyutsionnykh uravnenii pyatogo poryadka, obladayuschikh beskonechnoi seriei zakonov sokhraneniya”, Dokl. AN USSR. Ser. A., 1985, no. 10, 7–10

[4] Meshkov A. G., Sokolov V. V., “Integriruemye evolyutsionnye uravneniya s postoyannoi separantoi”, Ufim. mat. zh., 4:3 (2012), 104–154 | MR | Zbl

[5] Khabibullin I.T., Yangubaeva M. V., “Formalnaya diagonalizatsiya diskretnogo operatora Laksa i zakony sokhraneniya i simmetrii dinamicheskikh sistem”, Teor. mat. fiz., 177:3 (2013), 441–467 | DOI

[6] Adler V. E., On a discrete analog of the Tzitzeica equation, arXiv: 1103.5139 [nlin.SI]

[7] Fordy A. P., Gibbons J., “Factorization of operators, I. Miura transformations”, J. Math. Phys., 21 (1980), 2508–2510 | DOI | MR | Zbl

[8] Garifullin R. N., Yamilov R. I., “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45 (2012), 345205 | DOI | MR | Zbl

[9] Garifullin R. N., Yamilov R. I., “On integrability of a discrete analogue of Kaup—Kupershmidt equation”, Ufim. mat. zh., 9:3 (2017), 158–164 | MR

[10] Garifullin R. N., Yamilov R. I., Levi D., “Non-invertible transformations of differential-difference equations”, J. Phys. A: Math. Theor., 49 (2016), 37LT01 | DOI | MR | Zbl

[11] Garifullin R. N., Yamilov R. I., Levi D., “Classification of five-point differential-difference equations”, J. Phys. A: Math. Theor., 50 (2017), 125201 | DOI | MR | Zbl

[12] Garifullin R. N., Yamilov R. I., Levi D., Classification of five-point differential-difference equations, II, arXiv: 1708.02456 [nlin.SI] | MR

[13] Kaup D. J., “On the inverse scattering problem for cubic eigenvalue problems of the class $\psi_{xxx}+6Q\psi_x+6R\psi=\lambda\psi$”, Stud. Appl. Math., 62 (1980), 189–216 | DOI | MR | Zbl

[14] Mikhailov A. V., “Formal diagonalisation of Lax—Darboux schemes”, Model. anal. inform. sistem, 22:6 (2015), 795–817 | MR

[15] Mikhailov A. V., Sokolov V. V., Shabat A. B., “The symmetry approach to classification of integrable equations”, What is Integrability?, Springer Ser. Nonlin. Dynamics, 1991, 115–184 | DOI | MR

[16] Mikhailov A. V., Xenitidis P., “Second-order integrability conditions for difference equations: An integrable equation”, Lett. Math. Phys., 104:4 (2014), 431–450 | DOI | MR | Zbl

[17] Sawada K., Kotera T., “A method for finding $N$-soliton solutions of the KdV equation and KdV-like equation”, Progr. Theor. Phys., 51 (1974), 1355–1367 | DOI | MR | Zbl

[18] Tsujimoto S., Hirota R., “Pfaffian representation of solutions to the discrete BKP hierarchy in bilinear form”, J. Phys. Soc. Jpn., 65 (1996), 2797–2806 | DOI | MR | Zbl

[19] Yamilov R., “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39 (2006), R541–R623 | DOI | MR | Zbl