Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_152_a13, author = {R. N. Garifullin and R. I. Yamilov}, title = {On the {Integrability} of a {Lattice} {Equation} with {Two} {Continuum} {Limits}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {159--164}, publisher = {mathdoc}, volume = {152}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a13/} }
TY - JOUR AU - R. N. Garifullin AU - R. I. Yamilov TI - On the Integrability of a Lattice Equation with Two Continuum Limits JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 159 EP - 164 VL - 152 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_152_a13/ LA - ru ID - INTO_2018_152_a13 ER -
%0 Journal Article %A R. N. Garifullin %A R. I. Yamilov %T On the Integrability of a Lattice Equation with Two Continuum Limits %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 159-164 %V 152 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_152_a13/ %G ru %F INTO_2018_152_a13
R. N. Garifullin; R. I. Yamilov. On the Integrability of a Lattice Equation with Two Continuum Limits. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 159-164. http://geodesic.mathdoc.fr/item/INTO_2018_152_a13/
[1] Adler V. E., “Integriruemye Mebius-invariantnye evolyutsionnye tsepochki vtorogo poryadka”, Funkts. anal. prilozh., 50:4 (2016), 13–25 | DOI | MR | Zbl
[2] Garifullin R. N., Mikhailov A. V., Yamilov R. I., “Diskretnoe uravnenie na kvadratnoi reshetke s nestandartnoi strukturoi vysshikh simmetrii”, Teor. mat. fiz., 180:1 (2014), 17–34 | DOI | Zbl
[3] Drinfeld V. G., Svinolupov S. I., Sokolov V. V., “Klassifikatsiya evolyutsionnykh uravnenii pyatogo poryadka, obladayuschikh beskonechnoi seriei zakonov sokhraneniya”, Dokl. AN USSR. Ser. A., 1985, no. 10, 7–10
[4] Meshkov A. G., Sokolov V. V., “Integriruemye evolyutsionnye uravneniya s postoyannoi separantoi”, Ufim. mat. zh., 4:3 (2012), 104–154 | MR | Zbl
[5] Khabibullin I.T., Yangubaeva M. V., “Formalnaya diagonalizatsiya diskretnogo operatora Laksa i zakony sokhraneniya i simmetrii dinamicheskikh sistem”, Teor. mat. fiz., 177:3 (2013), 441–467 | DOI
[6] Adler V. E., On a discrete analog of the Tzitzeica equation, arXiv: 1103.5139 [nlin.SI]
[7] Fordy A. P., Gibbons J., “Factorization of operators, I. Miura transformations”, J. Math. Phys., 21 (1980), 2508–2510 | DOI | MR | Zbl
[8] Garifullin R. N., Yamilov R. I., “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45 (2012), 345205 | DOI | MR | Zbl
[9] Garifullin R. N., Yamilov R. I., “On integrability of a discrete analogue of Kaup—Kupershmidt equation”, Ufim. mat. zh., 9:3 (2017), 158–164 | MR
[10] Garifullin R. N., Yamilov R. I., Levi D., “Non-invertible transformations of differential-difference equations”, J. Phys. A: Math. Theor., 49 (2016), 37LT01 | DOI | MR | Zbl
[11] Garifullin R. N., Yamilov R. I., Levi D., “Classification of five-point differential-difference equations”, J. Phys. A: Math. Theor., 50 (2017), 125201 | DOI | MR | Zbl
[12] Garifullin R. N., Yamilov R. I., Levi D., Classification of five-point differential-difference equations, II, arXiv: 1708.02456 [nlin.SI] | MR
[13] Kaup D. J., “On the inverse scattering problem for cubic eigenvalue problems of the class $\psi_{xxx}+6Q\psi_x+6R\psi=\lambda\psi$”, Stud. Appl. Math., 62 (1980), 189–216 | DOI | MR | Zbl
[14] Mikhailov A. V., “Formal diagonalisation of Lax—Darboux schemes”, Model. anal. inform. sistem, 22:6 (2015), 795–817 | MR
[15] Mikhailov A. V., Sokolov V. V., Shabat A. B., “The symmetry approach to classification of integrable equations”, What is Integrability?, Springer Ser. Nonlin. Dynamics, 1991, 115–184 | DOI | MR
[16] Mikhailov A. V., Xenitidis P., “Second-order integrability conditions for difference equations: An integrable equation”, Lett. Math. Phys., 104:4 (2014), 431–450 | DOI | MR | Zbl
[17] Sawada K., Kotera T., “A method for finding $N$-soliton solutions of the KdV equation and KdV-like equation”, Progr. Theor. Phys., 51 (1974), 1355–1367 | DOI | MR | Zbl
[18] Tsujimoto S., Hirota R., “Pfaffian representation of solutions to the discrete BKP hierarchy in bilinear form”, J. Phys. Soc. Jpn., 65 (1996), 2797–2806 | DOI | MR | Zbl
[19] Yamilov R., “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39 (2006), R541–R623 | DOI | MR | Zbl