Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_152_a12, author = {R. A. Sharipov}, title = {Symmetry-Based {Approach} to the {Problem} of a {Perfect} {Cuboid}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {143--158}, publisher = {mathdoc}, volume = {152}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a12/} }
TY - JOUR AU - R. A. Sharipov TI - Symmetry-Based Approach to the Problem of a Perfect Cuboid JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 143 EP - 158 VL - 152 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_152_a12/ LA - ru ID - INTO_2018_152_a12 ER -
%0 Journal Article %A R. A. Sharipov %T Symmetry-Based Approach to the Problem of a Perfect Cuboid %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 143-158 %V 152 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_152_a12/ %G ru %F INTO_2018_152_a12
R. A. Sharipov. Symmetry-Based Approach to the Problem of a Perfect Cuboid. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 143-158. http://geodesic.mathdoc.fr/item/INTO_2018_152_a12/
[58] Kostrikin A. I., Vvedenie v algebru, Nauka, M., 1977 | MR
[59] Stepanov S. A., “O vektornykh invariantakh simmetricheskikh grupp”, Diskr. mat., 8:2 (1996), 48–62 | DOI | Zbl
[60] Stepanov S. A., “O vektornykh invariantakh simmetricheskikh grupp”, Diskr. mat., 11:3 (1999), 4–14 | Zbl
[61] Sharipov R. A., “Neprivodimye polinomy v zadache o sovershennom kuboide”, Ufim. mat. zh., 4:1 (2012), 153–160
[62] Sharipov R. A., “Asimptoticheskii podkhod k zadache o sovershennom kuboide”, Ufim. mat. zh., 7:3 (2015), 100–113
[63] Beauville A., A tale of two surfaces, arXiv: 1303.1910 [math.AG] | MR
[64] Briand E., “When is the algebra of multisymmetric polynomials generated by the elementary multisymmetric polynomials?”, Beitr. Alg. Geom., 45:2 (2004), 353–368 | MR | Zbl
[65] Briand E., Rosas M. H., “Milne's volume function and vector symmetric polynomials”, J. Symbol. Comput., 44:5 (2009), 583–590 | DOI | MR | Zbl
[66] Cayley A., “On the symmetric functions of the roots of certain systems of two equations”, Phil. Trans. Roy. Soc. London, 147 (1857), 717–726 | MR
[67] Chein E. Z., “On the derived cuboid of an Eulerian triple”, Can. Math. Bull., 20:4 (1977), 509–510 | DOI | MR | Zbl
[68] Colman W. J. A., “On certain semiperfect cuboids”, Fibonacci Quart., 26:1 (1988), 54–57 | MR | Zbl
[69] Colman W. J. A., “Some observations on the classical cuboid and its parametric solutions”, Fibonacci Quart., 26:4 (1988), 338–343 | MR | Zbl
[70] Cox D. A., Little J. B., O'Shea D., Ideals, varieties, and algorithms, Springer-Verlag, New York, 1992 | MR | Zbl
[71] Dalbec J., Geometry and combinatorics of Chow forms, Ph.D. thesis, Cornell Univ., 1995 | MR
[72] Dalbec J., “Multisymmetric functions”, Beitr. Alg. Geom., 40:1 (1999), 27-–51 | MR | Zbl
[73] Freitag E., Manni R. S., Parametrization of the box variety by theta functions, arXiv: 1303.6495 [math.AG] | MR
[74] González-Vega L., Trujillo G., “Multivariate Sturm–Habicht sequences: real root counting on $n$-rectangles and triangles”, Rev. Mat. Comput., 10 (1997), 119–-130 | MR | Zbl
[75] Guy R. K., Unsolved problems in number theory, Springer-Verlag, New York, 1994 | MR | Zbl
[76] Halcke P., Deliciae mathematicae oder mathematisches Sinnen-Confect, N. Sauer, Hamburg, 1719
[77] Hartshorne R., Van Luijk R., Non-Euclidean Pythagorean triples, a problem of Euler, and rational points on K3 surfaces, arXiv: math/0606700 [math.NT] | MR
[78] Junker F., “Über symmetrische Functionen von mehreren Veränderlishen”, Math. Ann., 43 (1893), 225–270 | DOI | MR | Zbl
[79] Korec I., “Nonexistence of small perfect rational cuboid”, Acta Math. Univ. Comen., 42/43 (1983), 73–86 | MR | Zbl
[80] Korec I., “Nonexistence of small perfect rational cuboid, II”, Acta Math. Univ. Comen., 44/45 (1984), 39–48 | MR | Zbl
[81] Korec I., “Lower bounds for perfect rational cuboids”, Math. Slovaca., 42:5 (1992), 565–582 | MR | Zbl
[82] Kraitchik M., “On certain rational cuboids”, Scripta Math., 11 (1945), 317–326 | MR | Zbl
[83] Kraitchik M., Théorie des nombres. 3. Analyse Diophantine et application aux cuboides rationelles, Gauthier-Villars, Paris, 1947 | MR
[84] Kraitchik M., “Sur les cuboides rationelles”, Proc. Int. Congr. Math., 2 (1954), 33–34
[85] Lagrange J., “Sur le dérivé du cuboide Eulérien”, Can. Math. Bull., 22:2 (1979), 239–241 | DOI | MR
[86] Lal M., Blundon W. J., “Solutions of the Diophantine equations $x^2+y^2=l^2$, $y^2+z^2=m^2$, $z^2+x^2=n^2$”, Math. Comp., 20:144–147 (1966) | MR
[87] Leech J., “A remark on rational cuboids”, Can. Math. Bull., 24:3 (1981), 377–378 | DOI | MR | Zbl
[88] Masharov A. A., Sharipov R. A., A strategy of numeric search for perfect cuboids in the case of the second cuboid conjecture, arXiv: 1504.07161 [math.NT]
[89] Matson R. D. http://unsolvedproblems.org/S58.pdf
[90] Macdonald I. G., “Symmetric functions and Hall polynomials”, Oxford Math. Monogr., Clarendon Press, Oxford, 1979 | MR | Zbl
[91] McMahon P. A., “Memoir on symmetric functions of the roots of systems of equations”, Phil. Trans. Roy. Soc. London, 181 (1890), 481–536
[92] McMahon P. A., Combinatory analysis, Chelsea Publishing Company, New York, 1984 | MR
[93] Meskhishvili M., Perfect cuboid and congruent number equation solutions, arXiv: 1211.6548 [math.NT]
[94] Meskhishvili M., Parametric solutions for a nearly-perfect cuboid, arXiv: 1502.02375 [math.NT]
[95] Meskhishvili M., Diophantine equations and congruent number equation solutions, arXiv: 1504.04584 [math.GM]
[96] Milne P., “On the solutions of a set of polynomial equations”, Symbolic and Numerical Computation for Artificial Intelligence. Computational Mathematics and Applications, eds. Donald B. R., Kapur D., Mundy J. L., Academic Press Ltd., London, 1992, 89–-101 | MR
[97] Pedersen P., “Calculating multidimensional symmetric functions using Jacobi's formula”, Lect. Notes Comput. Sci., v. 539, Springer-Verlag, 1991, 304–317 | DOI | MR
[98] Pocklington H. C., “Some Diophantine impossibilities”, Proc. Cambridge Phil. Soc., 17 (1912), 108–121
[99] Ramsden J. R., A general rational solution of an equation associated with perfect cuboids, arXiv: 1207.5339 [math.NT]
[100] Ramsden J. R., Sharipov R. A., Inverse problems associated with perfect cuboids, arXiv: 1207.6764 [math.NT]
[101] Ramsden J. R., Sharipov R. A. https://arxiv.org/abs/1208.1859 On singularities of the inverse problems associated with perfect cuboids, arXiv: 1208.1859 [math.NT]
[102] Ramsden J. R., Sharipov R. A., On two algebraic parametrizations for rational solutions of the cuboid equations, arXiv: 1208.2587 [math.NT]
[103] Ramsden J. R., Sharipov R. A., Two and three descent for elliptic curves associated with perfect cuboids, arXiv: 1303.0765 [math.NT]
[104] Rathbun R. L., The integer cuboid table, arXiv: 1705.05929 [math.NT]
[105] Rathbun R. L., Four integer parametrizations for the monoclinic Diophantine piped, arXiv: 1705.07734 [math.HO]
[106] Richman D. R., “Explicit generators of the invariants of finite groups”, Adv. Math., 124:1 (1996), 49–76 | DOI | MR | Zbl
[107] Roberts T. S., “Some constraints on the existence of a perfect cuboid”, Austr. Math. Soc. Gazette, 37:1 (2010), 29–31 | MR | Zbl
[108] Rosas M. H., “MacMahon symmetric functions, the partition lattice, and Young subgroups”, J. Combin. Theory, 96A:2 (2001), 326-–340 | DOI | MR | Zbl
[109] Rota G.-C., Stein J. A., “A problem of Cayley from 1857 and how he could have solved it”, Lin. Algebra Appl., 411 (2005), 167–-253 | DOI | MR | Zbl
[110] Saunderson N., Elements of algebra, Cambridge Univ. Press, Cambridge, 1740
[111] Sawyer J., Reiter C. A., “Perfect parallelepipeds exist”, Math. Comp., 80 (2011), 1037–1040 | DOI | MR | Zbl
[112] Sharipov R. A., A note on a perfect Euler cuboid, arXiv: 1104.1716 [math.NT]
[113] Sharipov R. A., A note on the first cuboid conjecture, arXiv: 1109.2534 [math.NT]
[114] Sharipov R. A., A note on the second cuboid conjecture, arXiv: 1201.1229 [math.NT]
[115] Sharipov R. A., A note on the third cuboid conjecture, arXiv: 1203.2567 [math.NT]
[116] Sharipov R. A., Reverse asymptotic estimates for roots of the cuboid characteristic equation in the case of the second cuboid conjecture, arXiv: 1505.00724 [math.NT]
[117] Sharipov R. A., Asymptotic estimates for roots of the cuboid characteristic equation in the linear region, arXiv: 1505.02745 [math.NT]
[118] Sharipov R. A., Asymptotic estimates for roots of the cuboid characteristic equation in the nonlinear region, arXiv: 1506.04705 [math.NT]
[119] Sharipov R. A., On Walter Wyss' no perfect cuboid paper, arXiv: 1704.00165 [math.NT]
[120] Sharipov R. A., Perfect cuboids and multisymmetric polynomials, arXiv: 1205.3135 [math.NT] | MR
[121] Sharipov R. A., On an ideal of multisymmetric polynomials associated with perfect cuboids, arXiv: 1206.6769 [math.NT]
[122] Sharipov R. A., On the equivalence of cuboid equations and their factor equations, arXiv: 1207.2102 [math.NT]
[123] Sharipov R. A., A biquadratic Diophantine equation associated with perfect cuboids, arXiv: 1207.4081 [math.NT]
[124] Sharipov R. A., On a pair of cubic equations associated with perfect cuboids, arXiv: 1208.0308 [math.NT]
[125] Sharipov R. A., On two elliptic curves associated with perfect cuboids, arXiv: 1208.1227 [math.NT]
[126] Sharipov R. A., A note on solutions of the cuboid factor equations, arXiv: 1209.0723 [math.NT]
[127] Sharipov R. A., A note on rational and elliptic curves associated with the cuboid factor equations, arXiv: 1209.5706 [math.NT]
[128] Shläfli L., “Über die Resultante eines systems mehrerer algebraishen Gleihungen”, Gesamm. Math. Abhandlungen., 2 (1953), 9–112, Birkhäuser Verlag
[129] Sokolowsky B. D., VanHooft A. G., Volkert R. M., Reiter C. A., “An infinite family of perfect parallelepipeds”, Math. Comp., 83:289 (2014), 2441–2454 | DOI | MR | Zbl
[130] Spohn W. G., “On the integral cuboid”, Am. Math. Monthly., 79:1 (1972), 57–59 | DOI | MR | Zbl
[131] Stoll M., Testa D., The surface parametrizing cuboids, arXiv: 1009.0388 [math.AG]
[132] Vaccarino F., The ring of multisymmetric functions, arXiv: math/0205233 [math.RA] | MR
[133] Van Luijk R., On perfect cuboids, Doctoraalscriptie, Math. Inst. Univ. Utrecht, Utrecht, 2000
[134] Wyss W., No perfect cuboids, arXiv: 1506.02215 [math.RA]
[135] Wyss W., On rational points on the elliptic curve $E(q): p^2+q^2=r^2\,(1 + p^2\,q^2)$, arXiv: 1706.09842 [math.GM]
[136] Wyss W., The non-commutative binomial theorem, arXiv: 1707.03861 [math.RA]