Symmetry-Based Approach to the Problem of a Perfect Cuboid
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 143-158

Voir la notice de l'article provenant de la source Math-Net.Ru

A perfect cuboid is a rectangular parallelepiped in which the lengths of all edges, the lengths of all face diagonals, and also the lengths of spatial diagonals are integers. No such cuboid has yet been found, but their nonexistence have also not been proved. The problem of a perfect cuboid is among the unsolved mathematical problems. The problem has a natural $S_3$-symmetry connected to the permutations of edges of the cuboid and the corresponding permutations of face diagonals. In this paper, we give a survey of author's results and results of J. R. Ramsden on using the $S_3$ symmetry for the reduction and analysis of the Diophantine equations for a perfect cuboid.
Mots-clés : polynomial, Diophantine equation
Keywords: perfect cuboid.
@article{INTO_2018_152_a12,
     author = {R. A. Sharipov},
     title = {Symmetry-Based {Approach} to the {Problem} of a {Perfect} {Cuboid}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {143--158},
     publisher = {mathdoc},
     volume = {152},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a12/}
}
TY  - JOUR
AU  - R. A. Sharipov
TI  - Symmetry-Based Approach to the Problem of a Perfect Cuboid
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 143
EP  - 158
VL  - 152
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_152_a12/
LA  - ru
ID  - INTO_2018_152_a12
ER  - 
%0 Journal Article
%A R. A. Sharipov
%T Symmetry-Based Approach to the Problem of a Perfect Cuboid
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 143-158
%V 152
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_152_a12/
%G ru
%F INTO_2018_152_a12
R. A. Sharipov. Symmetry-Based Approach to the Problem of a Perfect Cuboid. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 143-158. http://geodesic.mathdoc.fr/item/INTO_2018_152_a12/