Asymptotic Problem for Second-Order Ordinary Differential Equation with Nonlinearity Corresponding to Butterfly Catastrophe
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 125-142

Voir la notice de l'article provenant de la source Math-Net.Ru

For the second-order nonlinear ordinary differential equation ${u''_{xx}=u^5-tu^3-x}$, we prove the existence and uniqueness of a strictly increasing solution, which satisfies an initial condition and a limit condition at infinity and whose graph lies between the zero equation and the continuous graph of the root of the nondifferential equation ${u^5-tu^3-x=0}$. For this solution, we find an asymptotics, which is uniform on the ray ${t\in(-\infty,-M^t)}$ as $x\to+\infty$; separately, we construct asymptotics on the ray ${s>M^s}$ and on the segment ${0\leq s\leq M^s}$, where ${s=|t|^{-5/2}x}$ is the variable compressed with respect to $x$. Using the method of matching asymptotic expansions, we construct a composite asymptotic expansion of the solution to the Cauchy problem whose initial conditions are found from the theorem on the existence of solutions to the original problem. Finally, we construct a uniform asymptotic expansion under the restriction ${t\leq 0}$ as ${x^2+t^2\to\infty}$.
Keywords: matching asymptotic expansions, nonlinear ordinary differential equation, nonlinear equation of mathematical physics, butterfly catastrophe.
@article{INTO_2018_152_a11,
     author = {O. Yu. Khachay},
     title = {Asymptotic {Problem} for {Second-Order} {Ordinary} {Differential} {Equation} with {Nonlinearity} {Corresponding} to {Butterfly} {Catastrophe}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {125--142},
     publisher = {mathdoc},
     volume = {152},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a11/}
}
TY  - JOUR
AU  - O. Yu. Khachay
TI  - Asymptotic Problem for Second-Order Ordinary Differential Equation with Nonlinearity Corresponding to Butterfly Catastrophe
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 125
EP  - 142
VL  - 152
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_152_a11/
LA  - ru
ID  - INTO_2018_152_a11
ER  - 
%0 Journal Article
%A O. Yu. Khachay
%T Asymptotic Problem for Second-Order Ordinary Differential Equation with Nonlinearity Corresponding to Butterfly Catastrophe
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 125-142
%V 152
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_152_a11/
%G ru
%F INTO_2018_152_a11
O. Yu. Khachay. Asymptotic Problem for Second-Order Ordinary Differential Equation with Nonlinearity Corresponding to Butterfly Catastrophe. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 125-142. http://geodesic.mathdoc.fr/item/INTO_2018_152_a11/