Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_152_a11, author = {O. Yu. Khachay}, title = {Asymptotic {Problem} for {Second-Order} {Ordinary} {Differential} {Equation} with {Nonlinearity} {Corresponding} to {Butterfly} {Catastrophe}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {125--142}, publisher = {mathdoc}, volume = {152}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a11/} }
TY - JOUR AU - O. Yu. Khachay TI - Asymptotic Problem for Second-Order Ordinary Differential Equation with Nonlinearity Corresponding to Butterfly Catastrophe JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 125 EP - 142 VL - 152 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_152_a11/ LA - ru ID - INTO_2018_152_a11 ER -
%0 Journal Article %A O. Yu. Khachay %T Asymptotic Problem for Second-Order Ordinary Differential Equation with Nonlinearity Corresponding to Butterfly Catastrophe %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 125-142 %V 152 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_152_a11/ %G ru %F INTO_2018_152_a11
O. Yu. Khachay. Asymptotic Problem for Second-Order Ordinary Differential Equation with Nonlinearity Corresponding to Butterfly Catastrophe. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 125-142. http://geodesic.mathdoc.fr/item/INTO_2018_152_a11/
[1] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundam. prikl. mat., 4:3 (1998), 799–851 | MR | Zbl
[2] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969
[3] Gilmor R., Prikladnaya teoriya katastrof, Mir, M., 1984 | MR
[4] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989
[5] Ilin A. M., Suleimanov B. I., “O dvukh spetsialnykh funktsiyakh, svyazannykh s osobennostyu sborki”, Dokl. RAN, 387:2 (2002), 156–158 | MR | Zbl
[6] Ilin A. M., Suleimanov B. I., “Zarozhdenie kontrastnykh struktur tipa stupenki, svyazannoe s katastrofoi sborki”, Mat. sb., 195:12 (2004), 27–46 | DOI | Zbl
[7] Kuznetsov A. N., “Differentsiruemye resheniya vyrozhdayuschikhsya sistem obyknovennykh uravnenii”, Funkts. anal. prilozh., 6:2 (1972), 41–52 | MR
[8] Suleimanov B. I., “Katastrofa sborki v medlenno menyayuschikhsya polozheniyakh ravnovesiya”, ZhETF, 122:5 (11) (2002), 1093–1106
[9] Suleimanov B. I., Nekotorye tipichnye osobennosti reshenii nelineinykh uravnenii matematicheskoi fiziki s malym parametrom, Diss. na soisk. uch. step. dokt. fiz.-mat. nauk, Ufa, 2009
[10] Fedoryuk M. V., Obyknovennye differentsialnye uravneniya, Nauka, M., 1985
[11] Khachai O. Yu., “O soglasovanii stepenno-logarifmicheskikh asimptoticheskikh razlozhenii resheniya singulyarnoi zadachi Koshi dlya sistemy obyknovennykh differentsialnykh uravnenii”, Tr. IMM UrO RAN, 19:1 (2013), 300–315 | MR
[12] Khachai O. Yu., “O primenenii metoda soglasovaniya asimptoticheskikh razlozhenii k singulyarnoi sisteme obyknovennykh differentsialnykh uravnenii s malym parametrom”, Diff. uravn., 50:5 (2014), 611–625 | DOI | MR | Zbl
[13] Khachai O. Yu., “Issledovanie asimptotiki resheniya trekhmernogo nelineinogo volnovogo uravneniya vblizi tochki katastrofy tipa «babochka»”, Tr. IMM UrO RAN, 23:2 (2017), 250–265 | MR
[14] Khachay O. Yu., Nosov P. A., “On some numerical integral curves for PDE in neighborhood of «butterfly» catastrophe point”, Ural Math. J., 2:2 (2016), 127–140 | DOI | Zbl
[15] Konopelchenko B. G., Ortenzi G., “Quasi-classical approximation in vortex filament dynamics. Integrable systems, gradient catastrophe and flutter”, Stud. Appl. Math., 130 (2012), 167–199 | DOI | MR