Asymptotic Problem for Second-Order Ordinary Differential Equation with Nonlinearity Corresponding to Butterfly Catastrophe
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 125-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the second-order nonlinear ordinary differential equation ${u''_{xx}=u^5-tu^3-x}$, we prove the existence and uniqueness of a strictly increasing solution, which satisfies an initial condition and a limit condition at infinity and whose graph lies between the zero equation and the continuous graph of the root of the nondifferential equation ${u^5-tu^3-x=0}$. For this solution, we find an asymptotics, which is uniform on the ray ${t\in(-\infty,-M^t)}$ as $x\to+\infty$; separately, we construct asymptotics on the ray ${s>M^s}$ and on the segment ${0\leq s\leq M^s}$, where ${s=|t|^{-5/2}x}$ is the variable compressed with respect to $x$. Using the method of matching asymptotic expansions, we construct a composite asymptotic expansion of the solution to the Cauchy problem whose initial conditions are found from the theorem on the existence of solutions to the original problem. Finally, we construct a uniform asymptotic expansion under the restriction ${t\leq 0}$ as ${x^2+t^2\to\infty}$.
Keywords: matching asymptotic expansions, nonlinear ordinary differential equation, nonlinear equation of mathematical physics, butterfly catastrophe.
@article{INTO_2018_152_a11,
     author = {O. Yu. Khachay},
     title = {Asymptotic {Problem} for {Second-Order} {Ordinary} {Differential} {Equation} with {Nonlinearity} {Corresponding} to {Butterfly} {Catastrophe}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {125--142},
     publisher = {mathdoc},
     volume = {152},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a11/}
}
TY  - JOUR
AU  - O. Yu. Khachay
TI  - Asymptotic Problem for Second-Order Ordinary Differential Equation with Nonlinearity Corresponding to Butterfly Catastrophe
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 125
EP  - 142
VL  - 152
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_152_a11/
LA  - ru
ID  - INTO_2018_152_a11
ER  - 
%0 Journal Article
%A O. Yu. Khachay
%T Asymptotic Problem for Second-Order Ordinary Differential Equation with Nonlinearity Corresponding to Butterfly Catastrophe
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 125-142
%V 152
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_152_a11/
%G ru
%F INTO_2018_152_a11
O. Yu. Khachay. Asymptotic Problem for Second-Order Ordinary Differential Equation with Nonlinearity Corresponding to Butterfly Catastrophe. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 125-142. http://geodesic.mathdoc.fr/item/INTO_2018_152_a11/

[1] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundam. prikl. mat., 4:3 (1998), 799–851 | MR | Zbl

[2] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969

[3] Gilmor R., Prikladnaya teoriya katastrof, Mir, M., 1984 | MR

[4] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989

[5] Ilin A. M., Suleimanov B. I., “O dvukh spetsialnykh funktsiyakh, svyazannykh s osobennostyu sborki”, Dokl. RAN, 387:2 (2002), 156–158 | MR | Zbl

[6] Ilin A. M., Suleimanov B. I., “Zarozhdenie kontrastnykh struktur tipa stupenki, svyazannoe s katastrofoi sborki”, Mat. sb., 195:12 (2004), 27–46 | DOI | Zbl

[7] Kuznetsov A. N., “Differentsiruemye resheniya vyrozhdayuschikhsya sistem obyknovennykh uravnenii”, Funkts. anal. prilozh., 6:2 (1972), 41–52 | MR

[8] Suleimanov B. I., “Katastrofa sborki v medlenno menyayuschikhsya polozheniyakh ravnovesiya”, ZhETF, 122:5 (11) (2002), 1093–1106

[9] Suleimanov B. I., Nekotorye tipichnye osobennosti reshenii nelineinykh uravnenii matematicheskoi fiziki s malym parametrom, Diss. na soisk. uch. step. dokt. fiz.-mat. nauk, Ufa, 2009

[10] Fedoryuk M. V., Obyknovennye differentsialnye uravneniya, Nauka, M., 1985

[11] Khachai O. Yu., “O soglasovanii stepenno-logarifmicheskikh asimptoticheskikh razlozhenii resheniya singulyarnoi zadachi Koshi dlya sistemy obyknovennykh differentsialnykh uravnenii”, Tr. IMM UrO RAN, 19:1 (2013), 300–315 | MR

[12] Khachai O. Yu., “O primenenii metoda soglasovaniya asimptoticheskikh razlozhenii k singulyarnoi sisteme obyknovennykh differentsialnykh uravnenii s malym parametrom”, Diff. uravn., 50:5 (2014), 611–625 | DOI | MR | Zbl

[13] Khachai O. Yu., “Issledovanie asimptotiki resheniya trekhmernogo nelineinogo volnovogo uravneniya vblizi tochki katastrofy tipa «babochka»”, Tr. IMM UrO RAN, 23:2 (2017), 250–265 | MR

[14] Khachay O. Yu., Nosov P. A., “On some numerical integral curves for PDE in neighborhood of «butterfly» catastrophe point”, Ural Math. J., 2:2 (2016), 127–140 | DOI | Zbl

[15] Konopelchenko B. G., Ortenzi G., “Quasi-classical approximation in vortex filament dynamics. Integrable systems, gradient catastrophe and flutter”, Stud. Appl. Math., 130 (2012), 167–199 | DOI | MR