Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 13-24

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the operator sheaf $-\Delta+V+\varepsilon\mathcal{L}_\varepsilon(\lambda)+\lambda^2$ in the space $L_2(\mathbb{R}^2)$, where the real-valued potential $V$ depends only on the first variable $x_1$, $\varepsilon$ is a small positive parameter, $\lambda$ is the spectral parameter, $\mathcal{L}_\varepsilon(\lambda)$ is a localized operator bounded with respect to the Laplacian $-\Delta$, and the essential spectrum of this operator is independent of $\varepsilon$ and contains certain critical points defined as isolated eigenvalues of the operator $-\dfrac{d^2}{dx_1^2}+V(x_1)$ in $L_2(\mathbb{R})$. The basic result obtained in this paper states that for small values of $\varepsilon$, in neighborhoods of critical points mentioned, isolated eigenvalues of the sheaf considered arise. Sufficient conditions for the existence or absence of such eigenvalues are obtained. The number of arising eigenvalues is determined, and in the case where they exist, the first terms of their asymptotic expansions are found.
Keywords: operator sheaf, spectrum, eigenvalue, critical point.
Mots-clés : perturbation
@article{INTO_2018_152_a1,
     author = {D. I. Borisov},
     title = {Perturbations of the {Continuous} {Spectrum} of a {Certain} {Nonlinear} {Two-Dimensional} {Operator} {Sheaf}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {13--24},
     publisher = {mathdoc},
     volume = {152},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a1/}
}
TY  - JOUR
AU  - D. I. Borisov
TI  - Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 13
EP  - 24
VL  - 152
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_152_a1/
LA  - ru
ID  - INTO_2018_152_a1
ER  - 
%0 Journal Article
%A D. I. Borisov
%T Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 13-24
%V 152
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_152_a1/
%G ru
%F INTO_2018_152_a1
D. I. Borisov. Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 13-24. http://geodesic.mathdoc.fr/item/INTO_2018_152_a1/