Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 13-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the operator sheaf $-\Delta+V+\varepsilon\mathcal{L}_\varepsilon(\lambda)+\lambda^2$ in the space $L_2(\mathbb{R}^2)$, where the real-valued potential $V$ depends only on the first variable $x_1$, $\varepsilon$ is a small positive parameter, $\lambda$ is the spectral parameter, $\mathcal{L}_\varepsilon(\lambda)$ is a localized operator bounded with respect to the Laplacian $-\Delta$, and the essential spectrum of this operator is independent of $\varepsilon$ and contains certain critical points defined as isolated eigenvalues of the operator $-\dfrac{d^2}{dx_1^2}+V(x_1)$ in $L_2(\mathbb{R})$. The basic result obtained in this paper states that for small values of $\varepsilon$, in neighborhoods of critical points mentioned, isolated eigenvalues of the sheaf considered arise. Sufficient conditions for the existence or absence of such eigenvalues are obtained. The number of arising eigenvalues is determined, and in the case where they exist, the first terms of their asymptotic expansions are found.
Keywords: operator sheaf, spectrum, eigenvalue, critical point.
Mots-clés : perturbation
@article{INTO_2018_152_a1,
     author = {D. I. Borisov},
     title = {Perturbations of the {Continuous} {Spectrum} of a {Certain} {Nonlinear} {Two-Dimensional} {Operator} {Sheaf}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {13--24},
     publisher = {mathdoc},
     volume = {152},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a1/}
}
TY  - JOUR
AU  - D. I. Borisov
TI  - Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 13
EP  - 24
VL  - 152
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_152_a1/
LA  - ru
ID  - INTO_2018_152_a1
ER  - 
%0 Journal Article
%A D. I. Borisov
%T Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 13-24
%V 152
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_152_a1/
%G ru
%F INTO_2018_152_a1
D. I. Borisov. Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 13-24. http://geodesic.mathdoc.fr/item/INTO_2018_152_a1/

[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR

[2] Borisov D. I., “Diskretnyi spektr pary nesimmetrichnykh volnovodov, soedinennykh oknom”, Mat. sb., 197:4 (2006), 3–32 | DOI | Zbl

[3] Borisov D. I., “O nekotorykh singulyarnykh vozmuscheniyakh periodicheskikh operatorov”, Teor. mat. fiz., 151:2 (2007), 207–218 | DOI | MR | Zbl

[4] Borisov D. I., “O spektre dvumernogo periodicheskogo operatora s malym lokalizovannym vozmuscheniem”, Izv. RAN. Ser. mat., 75:3 (2011), 29–64 | DOI | MR | Zbl

[5] Borisov D. I., Gadylshin R. R., “O spektre periodicheskogo operatora s malym lokalizovannym vozmuscheniem”, Izv. RAN. Ser. mat., 72:4 (2008), 37–66 | DOI | MR | Zbl

[6] Borisov D. I., Karimov R. Kh., Sharapov T. F., “Otsenka nachalnykh masshtabov dlya volnovodov s nekotorymi sluchainymi singulyarnymi potentsialami”, Ufim. mat. zh., 7:2 (2015), 35–59

[7] Gadylshin R. R., “O lokalnykh vozmuscheniyakh operatora Shredingera na osi”, Teor. mat. fiz., 132:4 (2002), 97–104 | DOI | Zbl

[8] Gadylshin R. R., “O lokalnykh vozmuscheniyakh operatora Shredingera na ploskosti”, Teor. mat. fiz., 138:1 (2004), 41–54 | DOI | MR | Zbl

[9] Alama S., Deift P. A., Hempel R., “Eigenvalue branches of the Schrödinger operator $H-\lambda W$ in a gap of $\sigma(H)$”, Commun. Math. Phys., 121:2 (1989), 291–321 | DOI | MR | Zbl

[10] Borisov D., Dmitriev S., “On the spectral stability of kinks in 2D Klein–Gordon model with parity-time-symmetric perturbation”, Stud. Appl. Math., 138:3 (2017), 317–342 | DOI | MR | Zbl

[11] Demirkaya A., Frantzeskakis D. J., Kevrekidis P. G., Saxena A., Stefanov A., “Effects of parity-time symmetry in nonlinear Klein–Gordon models and their stationary kinks”, Phys. Rev. E., 88:2 (2013), 023203 | DOI

[12] Demirkaya A., Kapitula T., Kevrekidis P. G., Stanislavova M., Stefanov A., “On the spectral stability of kinks in some pt-symmetric variants of the classical Klein–Gordon field theories”, Stud. Appl. Math., 133:3 (2014), 298–317 | DOI | MR | Zbl

[13] Exner P., Šeba P., Tater M., and Vaněck D., “Bound states and scattering in quantum waveguides coupled laterally through a boundary window”, J. Math. Phys., 37:10 (1996), 4867–4887 | DOI | MR | Zbl

[14] Exner P., Vugalter S., “Asymptotics estimates for bound states in quantum waveguides coupled laterally through a narrow window”, Ann. Inst. H. Poincaré. Phys. Théor., 65:1 (1996), 109–123 | MR | Zbl

[15] Exner P. and Vugalter S., “Bound-state asymptotic estimate for window-coupled Dirichlet strips and layers”, J. Phys. A: Math. Gen., 30:22 (1997), 7863–7878 | DOI | MR | Zbl

[16] Gadyl'shin R. R., “On regular and singular perturbations of acoustic and quantum waveguides”, Compt. Rend. Mech., 332:8 (2004), 647–652 | Zbl

[17] Gesztesy F., Holden H., “A unified approach to eigenvalues and resonances of Schrödinger operators using Fredholm determinants”, J. Math. Anal. Appl., 123:1 (1987), 181–198 | DOI | MR | Zbl

[18] Gesztesy F., Simon B., “A short proof of Zheludev's theorem”, Trans. Am. Math. Soc., 353:1 (1993), 329–340 | MR

[19] Klaus M., Simon B., “Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case”, Ann. Phys., 130:2 (1980), 251–281 | DOI | MR | Zbl

[20] Najar H., Hariz S. B., Salah M. B., “On the discrete spectrum of a spatial quantum waveguide with a disc window”, Math. Phys. Anal. Geom., 13:1 (2010), 19–28 | DOI | MR | Zbl

[21] Olendski O., Mikhailovska L., “A straight quantum wave guide with mixed Dirichlet and Neumann boundary conditions in uniform magnetic fields”, J. Phys. A: Math. Theor., 40:17 (2007), 4609–4634 | DOI | MR

[22] Popov I. Yu., “Asymptotics of bound states and bands for laterally coupled waveguides and layers”, J. Math. Phys., 43:1 (2002), 215–234 | DOI | MR | Zbl

[23] Simon B., “The bound state of weakly coupled Schrödinger operator in one and two dimensions”, Ann. Phys., 97:2 (1976), 279–288 | DOI | MR | Zbl