Eigenfunctions of Ordinary Differential Euler Operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic solutions of the eigenvalue problem for an Euler operator in a neighborhood of a regular singular point are considered. We find a condition under which the asymptotic expansion is free of logarithms. Eigenvalues expressed in terms of elementary functions in the form of a finite sum of quasi-polynomials are obtained for third-order Euler operators and also for commuting Euler operators of sixth and ninth orders. The problem on common eigenfunctions for commuting Euler operators is examined. In the case of operators of rank $2$ and $3$, it can be reduced to second- and third-order Bessel equations by differential substitutions.
Keywords: eigenfunction, Euler operator, Fuchsian singularity.
@article{INTO_2018_152_a0,
     author = {Yu. Yu. Bagderina},
     title = {Eigenfunctions of {Ordinary} {Differential} {Euler} {Operators}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {152},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a0/}
}
TY  - JOUR
AU  - Yu. Yu. Bagderina
TI  - Eigenfunctions of Ordinary Differential Euler Operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 3
EP  - 12
VL  - 152
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_152_a0/
LA  - ru
ID  - INTO_2018_152_a0
ER  - 
%0 Journal Article
%A Yu. Yu. Bagderina
%T Eigenfunctions of Ordinary Differential Euler Operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 3-12
%V 152
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_152_a0/
%G ru
%F INTO_2018_152_a0
Yu. Yu. Bagderina. Eigenfunctions of Ordinary Differential Euler Operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 3-12. http://geodesic.mathdoc.fr/item/INTO_2018_152_a0/

[1] Ains E. L., Obyknovennye differentsialnye uravneniya, GNTIU, Kharkov, 1939

[2] Bagderina Yu. Yu., “Uravneniya Besselya vysokikh poryadkov, integriruemye v elementarnykh funktsiyakh”, Itogi nauki i tekhn. Sovr. mat. prilozh. Tematich. obzory, 140 (2017), 3–17 | MR

[3] Baichorova F. Kh., “Ob analogakh funktsii Besselya tretego poryadka”, Ufim. mat. zh., 6:1 (2014), 12–17 | MR

[4] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. 1. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1965

[5] Bolibrukh A. A., Fuksovy differentsialnye uravneniya i golomorfnye rassloeniya, MTsNMO, M., 2000

[6] Sokolov V. V., “Primery kommutativnykh kolets differentsialnykh operatorov”, Funkts. anal. prilozh., 12:1 (1978), 82–83 | MR | Zbl

[7] Shabat A. B., Elkanova Z. S., “O kommutiruyuschikh differentsialnykh operatorakh”, Teor. mat. fiz., 162:3 (2010), 334–344 | DOI | MR | Zbl

[8] Forsyth A. R., Theory of differential equations. III. Ordinary linear equations, At the University Press, Cambridge, 1902 | MR