Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_152_a0, author = {Yu. Yu. Bagderina}, title = {Eigenfunctions of {Ordinary} {Differential} {Euler} {Operators}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--12}, publisher = {mathdoc}, volume = {152}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_152_a0/} }
TY - JOUR AU - Yu. Yu. Bagderina TI - Eigenfunctions of Ordinary Differential Euler Operators JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 3 EP - 12 VL - 152 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_152_a0/ LA - ru ID - INTO_2018_152_a0 ER -
Yu. Yu. Bagderina. Eigenfunctions of Ordinary Differential Euler Operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical physics, Tome 152 (2018), pp. 3-12. http://geodesic.mathdoc.fr/item/INTO_2018_152_a0/
[1] Ains E. L., Obyknovennye differentsialnye uravneniya, GNTIU, Kharkov, 1939
[2] Bagderina Yu. Yu., “Uravneniya Besselya vysokikh poryadkov, integriruemye v elementarnykh funktsiyakh”, Itogi nauki i tekhn. Sovr. mat. prilozh. Tematich. obzory, 140 (2017), 3–17 | MR
[3] Baichorova F. Kh., “Ob analogakh funktsii Besselya tretego poryadka”, Ufim. mat. zh., 6:1 (2014), 12–17 | MR
[4] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. 1. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1965
[5] Bolibrukh A. A., Fuksovy differentsialnye uravneniya i golomorfnye rassloeniya, MTsNMO, M., 2000
[6] Sokolov V. V., “Primery kommutativnykh kolets differentsialnykh operatorov”, Funkts. anal. prilozh., 12:1 (1978), 82–83 | MR | Zbl
[7] Shabat A. B., Elkanova Z. S., “O kommutiruyuschikh differentsialnykh operatorakh”, Teor. mat. fiz., 162:3 (2010), 334–344 | DOI | MR | Zbl
[8] Forsyth A. R., Theory of differential equations. III. Ordinary linear equations, At the University Press, Cambridge, 1902 | MR