Transformation Semigroups of the Space of Functions That Are Square Integrable with respect to a Translation-Invariant Measure on a Banach Space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 73-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine measures on a Banach space $E$ that are invariant under shifts by arbitrary vectors of the space and are additive extensions of a set function defined on the family of bars with converging products of edge lengths that do not satisfy the $\sigma$-finiteness condition and, perhaps, the countable additivity condition. We introduce the Hilbert space $\mathcal{H}$ of complex-valued functions of the space $E$ of functions that are square integrable with respect to a shift-invariant measure. We analyze properties of semigroups of shift operators in the space $\mathcal{H}$ and the corresponding generators and resolvents. We obtain a criterion of the strong continuity of such semigroups. We introduce and examine mathematical expectations of operators of shifts along random vectors by a one-parameter family of Gaussian measures that form a semigroup with respect to the convolution. We prove that the family of mathematical expectations is a one-parameter semigroup of linear self-adjoint contraction mappings of the space $\mathcal{H}$, find invariant subspaces of operators of this semigroup, and obtain conditions of its strong continuity.
Keywords: finitely additive measure, invariant measure on a group, random walk, continuous one-parameter semigroup, generator, resolvent.
@article{INTO_2018_151_a7,
     author = {V. Zh. Sakbaev},
     title = {Transformation {Semigroups} of the {Space} of {Functions} {That} {Are} {Square} {Integrable} with respect to a {Translation-Invariant} {Measure} on a {Banach} {Space}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {73--90},
     publisher = {mathdoc},
     volume = {151},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_151_a7/}
}
TY  - JOUR
AU  - V. Zh. Sakbaev
TI  - Transformation Semigroups of the Space of Functions That Are Square Integrable with respect to a Translation-Invariant Measure on a Banach Space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 73
EP  - 90
VL  - 151
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_151_a7/
LA  - ru
ID  - INTO_2018_151_a7
ER  - 
%0 Journal Article
%A V. Zh. Sakbaev
%T Transformation Semigroups of the Space of Functions That Are Square Integrable with respect to a Translation-Invariant Measure on a Banach Space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 73-90
%V 151
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_151_a7/
%G ru
%F INTO_2018_151_a7
V. Zh. Sakbaev. Transformation Semigroups of the Space of Functions That Are Square Integrable with respect to a Translation-Invariant Measure on a Banach Space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 73-90. http://geodesic.mathdoc.fr/item/INTO_2018_151_a7/

[1] Amosov G. G., Sakbaev V. Zh., “Geometricheskie svoistva vektornykh sostoyanii i razlozhenie sostoyanii v integraly Pettisa”, Algebra i analiz, 27:4, 1–14 | MR | Zbl

[2] Amosov G. G., Sakbaev V. Zh., “Ob analogakh spektralnogo razlozheniya kvantovogo sostoyaniya”, Mat. zametki, 93:3 (2013), 323–332 | DOI | Zbl

[3] Bogachev V. I., Osnovy teorii mery. T. 1, RKhD, M.-Izhevsk, 2003

[4] Bogachev V. I., Gaussovskie mery, Fizmatlit, M., 1997

[5] Veil A., Integrirovanie v topologicheskikh gruppakh i ego primenenie, IL, M., 1950

[6] Vershik A. M., “Suschestvuet li mera Lebega v beskonechnomernom prostranstve?”, Tr. Mat. in-ta im. V. A. Steklova RAN, 259 (2007), 256–281 | Zbl

[7] Go X. C., Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979

[8] Efremova L. S., Sakbaev V. Zh., “Ponyatie vzryva mnozhestva reshenii differentsialnykh uravnenii i usrednenie sluchainykh polugrupp”, Teor. mat. fiz., 185:2 (2015), 252–271 | DOI | MR | Zbl

[9] Orlov Yu. N., Sakbaev V. Zh., Smolyanov O. G., “Sluchainye neogranichennye operatory i formuly Feinmana”, Izv. RAN. Ser. mat., 80:6 (2016), 141–172 | DOI | MR | Zbl

[10] Sakbaev V. Zh., “Usrednenie sluchainykh bluzhdanii i mery na gilbertovom prostranstve, invariantnye otnositelno sdviga”, Teor. mat. fiz., 191:3 (2017), 473–502 | DOI | MR | Zbl

[11] Sakbaev V. Zh., “O zakone bolshikh chisel dlya kompozitsii nezavisimykh sluchainykh polugrupp”, Izv. vuzov. Ser. mat., 10 (2016), 86–91 | Zbl

[12] Sakbaev V. Zh., Smolyanov O. G., “Analogi formul Feinmana dlya nekorrektnykh zadach, svyazannykh s uravneniem Shredingera”, Dokl. RAN., 471:3 (2016), 275–280 | DOI | MR | Zbl

[13] Sakbaev V. Zh., “Sluchainye bluzhdaniya i mery na gilbertovom prostranstve, invariantnye otnositelno sdvigov i povorotov”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 140 (2017), 88–118 | MR

[14] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[15] Baker R., “«Lebesgue measure» on $R^{\infty}$”, Proc. Am. Math. Soc., 113:4 (1991), 1023–1029 | MR | Zbl

[16] Sakbaev V. Zh., Volovich I. V., “Self-adjoint approximations of the degenerate Schrödinger operator”, $p$-Adic Numbers Ultrametric Anal. Appl., 9:1 (2017), 39–52 | DOI | MR | Zbl