Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_151_a7, author = {V. Zh. Sakbaev}, title = {Transformation {Semigroups} of the {Space} of {Functions} {That} {Are} {Square} {Integrable} with respect to a {Translation-Invariant} {Measure} on a {Banach} {Space}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {73--90}, publisher = {mathdoc}, volume = {151}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_151_a7/} }
TY - JOUR AU - V. Zh. Sakbaev TI - Transformation Semigroups of the Space of Functions That Are Square Integrable with respect to a Translation-Invariant Measure on a Banach Space JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 73 EP - 90 VL - 151 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_151_a7/ LA - ru ID - INTO_2018_151_a7 ER -
%0 Journal Article %A V. Zh. Sakbaev %T Transformation Semigroups of the Space of Functions That Are Square Integrable with respect to a Translation-Invariant Measure on a Banach Space %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 73-90 %V 151 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_151_a7/ %G ru %F INTO_2018_151_a7
V. Zh. Sakbaev. Transformation Semigroups of the Space of Functions That Are Square Integrable with respect to a Translation-Invariant Measure on a Banach Space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 73-90. http://geodesic.mathdoc.fr/item/INTO_2018_151_a7/
[1] Amosov G. G., Sakbaev V. Zh., “Geometricheskie svoistva vektornykh sostoyanii i razlozhenie sostoyanii v integraly Pettisa”, Algebra i analiz, 27:4, 1–14 | MR | Zbl
[2] Amosov G. G., Sakbaev V. Zh., “Ob analogakh spektralnogo razlozheniya kvantovogo sostoyaniya”, Mat. zametki, 93:3 (2013), 323–332 | DOI | Zbl
[3] Bogachev V. I., Osnovy teorii mery. T. 1, RKhD, M.-Izhevsk, 2003
[4] Bogachev V. I., Gaussovskie mery, Fizmatlit, M., 1997
[5] Veil A., Integrirovanie v topologicheskikh gruppakh i ego primenenie, IL, M., 1950
[6] Vershik A. M., “Suschestvuet li mera Lebega v beskonechnomernom prostranstve?”, Tr. Mat. in-ta im. V. A. Steklova RAN, 259 (2007), 256–281 | Zbl
[7] Go X. C., Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979
[8] Efremova L. S., Sakbaev V. Zh., “Ponyatie vzryva mnozhestva reshenii differentsialnykh uravnenii i usrednenie sluchainykh polugrupp”, Teor. mat. fiz., 185:2 (2015), 252–271 | DOI | MR | Zbl
[9] Orlov Yu. N., Sakbaev V. Zh., Smolyanov O. G., “Sluchainye neogranichennye operatory i formuly Feinmana”, Izv. RAN. Ser. mat., 80:6 (2016), 141–172 | DOI | MR | Zbl
[10] Sakbaev V. Zh., “Usrednenie sluchainykh bluzhdanii i mery na gilbertovom prostranstve, invariantnye otnositelno sdviga”, Teor. mat. fiz., 191:3 (2017), 473–502 | DOI | MR | Zbl
[11] Sakbaev V. Zh., “O zakone bolshikh chisel dlya kompozitsii nezavisimykh sluchainykh polugrupp”, Izv. vuzov. Ser. mat., 10 (2016), 86–91 | Zbl
[12] Sakbaev V. Zh., Smolyanov O. G., “Analogi formul Feinmana dlya nekorrektnykh zadach, svyazannykh s uravneniem Shredingera”, Dokl. RAN., 471:3 (2016), 275–280 | DOI | MR | Zbl
[13] Sakbaev V. Zh., “Sluchainye bluzhdaniya i mery na gilbertovom prostranstve, invariantnye otnositelno sdvigov i povorotov”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 140 (2017), 88–118 | MR
[14] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962
[15] Baker R., “«Lebesgue measure» on $R^{\infty}$”, Proc. Am. Math. Soc., 113:4 (1991), 1023–1029 | MR | Zbl
[16] Sakbaev V. Zh., Volovich I. V., “Self-adjoint approximations of the degenerate Schrödinger operator”, $p$-Adic Numbers Ultrametric Anal. Appl., 9:1 (2017), 39–52 | DOI | MR | Zbl