Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_151_a3, author = {D. V. Zavadskii}, title = {Analogs of the {Lebesgue} {Measure} in {Spaces} of {Sequences} and {Classes} of {Functions} {Integrable} with respect to {These} {Measures}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {37--44}, publisher = {mathdoc}, volume = {151}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_151_a3/} }
TY - JOUR AU - D. V. Zavadskii TI - Analogs of the Lebesgue Measure in Spaces of Sequences and Classes of Functions Integrable with respect to These Measures JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 37 EP - 44 VL - 151 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_151_a3/ LA - ru ID - INTO_2018_151_a3 ER -
%0 Journal Article %A D. V. Zavadskii %T Analogs of the Lebesgue Measure in Spaces of Sequences and Classes of Functions Integrable with respect to These Measures %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 37-44 %V 151 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_151_a3/ %G ru %F INTO_2018_151_a3
D. V. Zavadskii. Analogs of the Lebesgue Measure in Spaces of Sequences and Classes of Functions Integrable with respect to These Measures. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 37-44. http://geodesic.mathdoc.fr/item/INTO_2018_151_a3/
[1] Korotaev S. M., “O vozmozhnosti prichinnogo analiza geofizicheskikh protsessov”, Geomagnetizm i aeronomiya, 32 (1992), 27–33
[2] Bennett C. H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W. K., “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels”, Phys. Rev. Lett., 70 (1993), 1895 | DOI | MR | Zbl
[3] Bennet H., Wiesner S. J., “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states”, Phys. Rev. Lett., 69 (1992), 2881 | DOI | MR | Zbl
[4] Cerf N. J., Adami C., “Negative entropy and information in quantum mechanics”, Phys. Rev. Lett., 79 (1997), 5194–5197 | DOI | MR | Zbl
[5] Cerf N. J., Adami C., “Quantum extension of conditional probability”, Phys. Rev. A, 60 (1999), 893–897 | DOI | MR
[6] Fanchini F. F., Castelano L. K., Cornelio M. F., de Oliveira M. C., “Locally inaccessible information as a fundamental ingredient to quantum information”, New J. Phys., 14 (2012), 013027 | DOI
[7] Fedorov A. K., Kiktenko E. O., Man'ko O. V., Man'ko V. I., “Tomographic discord for a system of two coupled nanoelectric circuits”, Phys. Scr., 90 (2015), 055101 | DOI
[8] Fel'dman E. B., Zenchuk A. I., “Asymmetry of bipartite quantum discord”, JETP Lett., 93 (2011), 459–462 | DOI
[9] L. Henderson and V. Vedral, “Classical, quantum and total correlations”, J. Phys. A, 34 (2001), 6899 | DOI | MR | Zbl
[10] Holevo A. S., Quantum systems, channels, information: A mathematical introduction, de Gruyter, 2012 | MR | Zbl
[11] Horodecki K., Horodecki M., Horodecki P., “Are quantum correlations symmetric?”, Quantum Inf. Comput., 10 (2010), 901–910 | MR | Zbl
[12] Horodecki M., Oppenheim J., Winter A., “Partial quantum information”, Nature, 436 (2005), 673–676 | DOI
[13] Horodecki M., Oppenheim J., Winter A., “Quantum state merging and negative information”, Commun. Math. Phys., 269 (2007), 107–136 | DOI | MR | Zbl
[14] Horodecki R., Horodecki P., “Quantum redundancies and local realism”, Phys. Lett. A, 194 (1994), 147–152 | DOI | MR | Zbl
[15] Imamoglu A., Awschalom D. D., Burkard G., DiVincenzo D. P., Loss D., Sherwin M., Small A., “Quantum information processing using quantum dot spins and cavity QED”, Phys. Rev. Lett., 83 (1999), 4204–4207 | DOI
[16] Kiktenko E. O., Fedorov A. K., “Tomographic causal analysis of two-qubit states and tomographic discord”, Phys. Lett. A., 378 (2014), 1704 | DOI | MR | Zbl
[17] Kiktenko E. O., Korotaev S. M., “Causal analysis of asymmetric entangled states under decoherence”, Phys. Lett. A., 376 (2012), 820 | DOI | MR | Zbl
[18] Korotaev S. M., Kiktenko E. O., “Causal analysis of the quantum states”, AIP Conf. Proc., 1316 (2010), 295–331 | DOI
[19] Korotaev S. M., Kiktenko E. O., “Causality and decoherence in the asymmetric states”, Phys. Scr., 85 (2012), 055006 | DOI | Zbl
[20] Maldonado-Trapp A., Hu A., Roa L., “Analytical solutions and criteria for the quantum discord of two-qubit $X$-states”, Quantum Inf. Process., 14 (2015), 1947–1958 | DOI | MR | Zbl
[21] Ollivier H., Zurek W. H., “Quantum discord: A measure of the quantumness of correlations”, Phys. Rev. Lett., 88 (2001), 017901 | DOI
[22] Siewert J., Fazio R., Palma G. M., Sciacca E., “Aspects of qubit dynamics in the presence of leakage”, J. Low Temp. Phys., 118 (2000), 795–804 | DOI
[23] Su X., Wang W., Wang Y., Jia X., Xie C., Peng K., “Continuous variable quantum key distribution based on optical entangled states without signal modulation”, Eur. Phys. Lett., 87 (2009), 2005
[24] Sun Y., Chen Yu., Chen H., “Thermal entanglement in the two-qubit Heisenberg $XY$ model under a nonuniform external magnetic field”, Phys. Rev. A., 68 (2003), 044301 | DOI
[25] Wotters W. K., “Entanglement of formation of an arbitrary state of two qubits”, Phys. Rev. Lett., 80 (1998), 2245 | DOI
[26] Wotters W. K., Zurek W. H., “A single quantum cannot be cloned”, Nature, 299 (1982), 802–803 | DOI
[27] Ye Y., Tongqi L., Yu-En L., Qi-Zhong Y., “Quantum teleportation via a two-qubit Heisenberg $XY$ chain: effects of anisotropy and magnetic field”, J. Phys. A, 38 (2005), 3235 | DOI | MR | Zbl
[28] Yu T., Eberly J. H., “Evolution from entanglement to decoherence ofbipartite mixed “X” states”, Quantum Inf. Comput., 7 (2007), 459–468 | MR | Zbl
[29] Zhang J., Long G. L., Zhang W., Deng Z., Liu W., Lu Z., “Simulation of Heisenberg $XY$ interactions and realization of a perfect state transfer in spin chains using liquid nuclear magnetic resonance”, Phys. Rev. A, 72 (2005), 012331 | DOI | MR