Analogs of the Lebesgue Measure in Spaces of Sequences and Classes of Functions Integrable with respect to These Measures
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 37-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine translation-invariant measures on Banach spaces $l_p$, where $p\in[1,\infty]$. We construct analogs of the Lebesgue measure on Borel $\sigma$-algebras generated by the topology of pointwise convergence ($\sigma$-additive, invariant under shifts by arbitrary vectors, regular measures). We show that these measures are not $\sigma$-finite. We also study spaces of functions integrable with respect to measures constructed and prove that these spaces are not separable. We consider various dense subspaces in spaces of functions that are integrable with respect to a translation-invariant measure. We specify spaces of continuous functions, which are dense in the functional spaces considered. We discuss Borel $\sigma$-algebras corresponding to various topologies in the spaces $l_p$, where $p\in[1,\infty]$. For $p\in [1, \infty)$, we prove the coincidence of Borel $\sigma$-algebras corresponding to certain natural topologies in the given spaces of sequences and the Borel $\sigma$-algebra corresponding to the topology of pointwise convergence. We also verify that the space $l_\infty$ does not possess similar properties.
Keywords: translation-invariant measure, topology of pointwise convergence, Borel $\sigma$-algebra, space of integrable functions, approximation of integrable functions by continuous functions.
@article{INTO_2018_151_a3,
     author = {D. V. Zavadskii},
     title = {Analogs of the {Lebesgue} {Measure} in {Spaces} of {Sequences} and {Classes} of {Functions} {Integrable} with respect to {These} {Measures}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {37--44},
     publisher = {mathdoc},
     volume = {151},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_151_a3/}
}
TY  - JOUR
AU  - D. V. Zavadskii
TI  - Analogs of the Lebesgue Measure in Spaces of Sequences and Classes of Functions Integrable with respect to These Measures
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 37
EP  - 44
VL  - 151
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_151_a3/
LA  - ru
ID  - INTO_2018_151_a3
ER  - 
%0 Journal Article
%A D. V. Zavadskii
%T Analogs of the Lebesgue Measure in Spaces of Sequences and Classes of Functions Integrable with respect to These Measures
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 37-44
%V 151
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_151_a3/
%G ru
%F INTO_2018_151_a3
D. V. Zavadskii. Analogs of the Lebesgue Measure in Spaces of Sequences and Classes of Functions Integrable with respect to These Measures. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 37-44. http://geodesic.mathdoc.fr/item/INTO_2018_151_a3/

[1] Korotaev S. M., “O vozmozhnosti prichinnogo analiza geofizicheskikh protsessov”, Geomagnetizm i aeronomiya, 32 (1992), 27–33

[2] Bennett C. H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W. K., “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels”, Phys. Rev. Lett., 70 (1993), 1895 | DOI | MR | Zbl

[3] Bennet H., Wiesner S. J., “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states”, Phys. Rev. Lett., 69 (1992), 2881 | DOI | MR | Zbl

[4] Cerf N. J., Adami C., “Negative entropy and information in quantum mechanics”, Phys. Rev. Lett., 79 (1997), 5194–5197 | DOI | MR | Zbl

[5] Cerf N. J., Adami C., “Quantum extension of conditional probability”, Phys. Rev. A, 60 (1999), 893–897 | DOI | MR

[6] Fanchini F. F., Castelano L. K., Cornelio M. F., de Oliveira M. C., “Locally inaccessible information as a fundamental ingredient to quantum information”, New J. Phys., 14 (2012), 013027 | DOI

[7] Fedorov A. K., Kiktenko E. O., Man'ko O. V., Man'ko V. I., “Tomographic discord for a system of two coupled nanoelectric circuits”, Phys. Scr., 90 (2015), 055101 | DOI

[8] Fel'dman E. B., Zenchuk A. I., “Asymmetry of bipartite quantum discord”, JETP Lett., 93 (2011), 459–462 | DOI

[9] L. Henderson and V. Vedral, “Classical, quantum and total correlations”, J. Phys. A, 34 (2001), 6899 | DOI | MR | Zbl

[10] Holevo A. S., Quantum systems, channels, information: A mathematical introduction, de Gruyter, 2012 | MR | Zbl

[11] Horodecki K., Horodecki M., Horodecki P., “Are quantum correlations symmetric?”, Quantum Inf. Comput., 10 (2010), 901–910 | MR | Zbl

[12] Horodecki M., Oppenheim J., Winter A., “Partial quantum information”, Nature, 436 (2005), 673–676 | DOI

[13] Horodecki M., Oppenheim J., Winter A., “Quantum state merging and negative information”, Commun. Math. Phys., 269 (2007), 107–136 | DOI | MR | Zbl

[14] Horodecki R., Horodecki P., “Quantum redundancies and local realism”, Phys. Lett. A, 194 (1994), 147–152 | DOI | MR | Zbl

[15] Imamoglu A., Awschalom D. D., Burkard G., DiVincenzo D. P., Loss D., Sherwin M., Small A., “Quantum information processing using quantum dot spins and cavity QED”, Phys. Rev. Lett., 83 (1999), 4204–4207 | DOI

[16] Kiktenko E. O., Fedorov A. K., “Tomographic causal analysis of two-qubit states and tomographic discord”, Phys. Lett. A., 378 (2014), 1704 | DOI | MR | Zbl

[17] Kiktenko E. O., Korotaev S. M., “Causal analysis of asymmetric entangled states under decoherence”, Phys. Lett. A., 376 (2012), 820 | DOI | MR | Zbl

[18] Korotaev S. M., Kiktenko E. O., “Causal analysis of the quantum states”, AIP Conf. Proc., 1316 (2010), 295–331 | DOI

[19] Korotaev S. M., Kiktenko E. O., “Causality and decoherence in the asymmetric states”, Phys. Scr., 85 (2012), 055006 | DOI | Zbl

[20] Maldonado-Trapp A., Hu A., Roa L., “Analytical solutions and criteria for the quantum discord of two-qubit $X$-states”, Quantum Inf. Process., 14 (2015), 1947–1958 | DOI | MR | Zbl

[21] Ollivier H., Zurek W. H., “Quantum discord: A measure of the quantumness of correlations”, Phys. Rev. Lett., 88 (2001), 017901 | DOI

[22] Siewert J., Fazio R., Palma G. M., Sciacca E., “Aspects of qubit dynamics in the presence of leakage”, J. Low Temp. Phys., 118 (2000), 795–804 | DOI

[23] Su X., Wang W., Wang Y., Jia X., Xie C., Peng K., “Continuous variable quantum key distribution based on optical entangled states without signal modulation”, Eur. Phys. Lett., 87 (2009), 2005

[24] Sun Y., Chen Yu., Chen H., “Thermal entanglement in the two-qubit Heisenberg $XY$ model under a nonuniform external magnetic field”, Phys. Rev. A., 68 (2003), 044301 | DOI

[25] Wotters W. K., “Entanglement of formation of an arbitrary state of two qubits”, Phys. Rev. Lett., 80 (1998), 2245 | DOI

[26] Wotters W. K., Zurek W. H., “A single quantum cannot be cloned”, Nature, 299 (1982), 802–803 | DOI

[27] Ye Y., Tongqi L., Yu-En L., Qi-Zhong Y., “Quantum teleportation via a two-qubit Heisenberg $XY$ chain: effects of anisotropy and magnetic field”, J. Phys. A, 38 (2005), 3235 | DOI | MR | Zbl

[28] Yu T., Eberly J. H., “Evolution from entanglement to decoherence ofbipartite mixed “X” states”, Quantum Inf. Comput., 7 (2007), 459–468 | MR | Zbl

[29] Zhang J., Long G. L., Zhang W., Deng Z., Liu W., Lu Z., “Simulation of Heisenberg $XY$ interactions and realization of a perfect state transfer in spin chains using liquid nuclear magnetic resonance”, Phys. Rev. A, 72 (2005), 012331 | DOI | MR