Applications of L\'evy Differential Operators in the Theory of Gauge Fields
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 21-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a survey of results on the relationship between gauge fields and infinite-dimensional equations for parallel transport that contain the Lévy Laplacian or the divergence associated with this Laplacian. Also we analyze the deterministic case where parallel transports are operator-valued functionals on the space of curves and the case of the Malliavin calculus where (stochastic) parallel transports are operator-valued Wiener functionals.
Keywords: Lévy Laplacian, gauge field, Yang–Mills equations, instanton
Mots-clés : Lévy divergence, Malliavin calculus.
@article{INTO_2018_151_a2,
     author = {B. O. Volkov},
     title = {Applications of {L\'evy} {Differential} {Operators} in the {Theory} of {Gauge} {Fields}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {21--36},
     publisher = {mathdoc},
     volume = {151},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_151_a2/}
}
TY  - JOUR
AU  - B. O. Volkov
TI  - Applications of L\'evy Differential Operators in the Theory of Gauge Fields
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 21
EP  - 36
VL  - 151
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_151_a2/
LA  - ru
ID  - INTO_2018_151_a2
ER  - 
%0 Journal Article
%A B. O. Volkov
%T Applications of L\'evy Differential Operators in the Theory of Gauge Fields
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 21-36
%V 151
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_151_a2/
%G ru
%F INTO_2018_151_a2
B. O. Volkov. Applications of L\'evy Differential Operators in the Theory of Gauge Fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 21-36. http://geodesic.mathdoc.fr/item/INTO_2018_151_a2/

[1] Averbukh V. I., Smolyanov O. G., “Teoriya differentsirovaniya v lineinykh topologicheskikh prostranstvakh”, Usp. mat. nauk, 22:6 (138) (1967), 201–260 | MR | Zbl

[2] Averbukh V. I., Smolyanov O. G., Fomin S. V., “Obobschennye funktsii i differentsialnye uravneniya v lineinykh prostranstvakh. II. Differentsialnye operatory i ikh preobrazovaniya Fure”, Tr. Mosk. mat. o-va, v. 27, Izd-vo Mosk. un-ta, M., 1972, 249–262

[3] Akkardi L., Smolyanov O. G., “Formuly Feinmana dlya evolyutsionnykh uravnenii s laplasianom Levi na beskonechnomernykh mnogoobraziyakh”, Dokl. RAN, 407:5 (2006), 1–6 | MR

[4] Arefeva I. Ya., Volovich I. V. Funktsionalnye vysshie zakony sokhraneniya v kalibrovochnykh teoriyakh, Obobschennye funktsii i ikh primeneniya v matematicheskoi fizike, VTs AN SSSR, M., 1981, 43–49

[5] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: Metody i prilozheniya, Nauka, M., 1986

[6] Sergeev A. G., Garmonicheskie otobrazheniya, Mat. in-t im. V. A. Steklova, M., 2008

[7] Volkov B. O., Laplasiany Levi i svyazannye s nimi konstruktsii, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, M., 2014

[8] Volkov B. O., “Dalambertiany Levi i ikh primenenie v kvantovoi teorii”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. fiz.-mat. nauki, 19:2 (2015), 241–258 | DOI | Zbl

[9] Volkov B. O., “Laplasiany Levi i instantony”, Tr. Mat. in-ta im. V. A. Steklova, v. 290, M., 2015, 226–238 | DOI | Zbl

[10] Levi P., Konkretnye problemy funktsionalnogo analiza, Nauka, M., 1967

[11] Accardi L., “Yang–Mills equations and Lévy-Laplacians”, Dirichlet Forms and Stochastic Processes, de Gruyter, Berlin, 1995, 1–24 | MR | Zbl

[12] Accardi L., Gibilisco P., Volovich I. V., “The Lévy Laplacian and the Yang–Mills equations”, Rend. Lincei, 4 (1993), 201–206 | DOI | MR

[13] Accardi L., Gibilisco P., Volovich I. V., “Yang–Mills gauge fields as harmonic functions for the Levy Laplacians”, Russ. J. Math. Phys., 2:2 (1994), 235–250 | MR | Zbl

[14] Arnaudon M., Bauer R. O., Thalmaier A., “A probabilistic approach to the Yang–Mills heat equation”, J. Math. Pures Appl., 81 (2002), 143–166 | DOI | MR | Zbl

[15] Arnaudon M., Thalmaier A., “Yang–Mills fields and random holonomy along Brownian bridges”, Ann. Probab., 31:2 (2003), 769–790 | DOI | MR | Zbl

[16] Atiyah M. F., Drinfeld V. G., Hitchin N. J., Manin Yu. I., “Construction of instantons”, Phys. Lett. A, 65 (1978), 185–187 | DOI | MR | Zbl

[17] Bauer R. O., “Characterizing Yang–Mills fields by stochastic parallel transport”, J. Fuct. Anal., 155:1 (1998), 536–549 | DOI | MR | Zbl

[18] Bauer R. O., “Yang–-Mills fields and stochastic parallel transport in small geodesic balls”, Stochastic Process. Appl., 89:2 (2000), 213–-226 | DOI | MR | Zbl

[19] Bogachev V. I., Gaussian measures, Am. Math. Soc., Providence, Rhode Island, 1998 | MR

[20] Driver B., “Classifications of bundle connection pairs by parallel translation and lassos”, J. Funct. Anal., 83 (1989), 185–231 | DOI | MR | Zbl

[21] Gross L., “A Poincarè lemma for connection forms”, J. Funct. Anal., 63 (1985), 1–46 | DOI | MR | Zbl

[22] Ikeda N., Watanabe S., Stochastic differential equations and diffusions processes, North-Holland, Amsterdam, 1981 | MR

[23] Klingenberg W., Riemannian geometry, de Gruyter, Berlin, 1982 | MR | Zbl

[24] Kuo H.-H., Obata N., Saitô K., “Lévy Laplacian of generalized functions on a nuclear space”, J. Funct. Anal., 94:1 (1990), 74–92 | DOI | MR | Zbl

[25] Kuo H.-H., “Recent progress on the white noise approach to the Levy Laplacian”, Quantum information and complexity, Meijo Winter School 2003 (Nagoya, Japan, January 6–10, 2003), World Scientific, River Edge, New Jersey, 2004, 267–295 | DOI

[26] Leandre R., Volovich I. V., “The stochastic Lévy Laplacian and Yang–Mills equation on manifolds”, Infin. Dimens. Anal. Quantum Probab.Relat. Top., 4:2 (2001), 151–172 | DOI | MR

[27] Stafford S., “A stochastic criterion for Yang–Mills connections”, Diffusion processes and related problems in analysis, Birkhäuser, Boston, MA, 1990, 313–322 | MR

[28] Stroock D. W., Varadhan S. R. S., “On the support of diffusion processes with applications to the strong maximum principle”, 6 Berkeley Symp. on Math. Stat. and Probability. Vol. 3. Probability Theory., Univ. of California Press, Berkeley, California, 1972, 333–359 | MR | Zbl

[29] Polyakov A. M., “Gauge fields as rings of glue”, Nucl. Phys. B, 164 (1980), 171–188 | DOI | MR

[30] Volkov B. O., Levy differential operators and gauge invariant equations for Dirac and Higgs fields, arXiv: 1612.00310 [math-ph] | MR

[31] Volkov B. O., “Stochastic Lévy differential operators and Yang–Mills equations”, Infin. Dimens. Anal. Quant. Probab. Relat. Top., 20:2 (2017), 1750008 | DOI | MR | Zbl