Tensor Products of Quantum Mappings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 117-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine properties of the tensor powers of quantum mappings $\Phi$. In particular, we review positivity properties of unitary and non-unitary qubit mappings $\Phi^{\otimes 2}$. For arbitrary finite-dimensional systems, we present the relationship between the positive and completely positive divisibility of dynamical mappings $\Phi_t^{\otimes 2}$ and $\Phi_t$. A criterion of annihilation of entanglement by an arbitrary qubit mapping $\Phi^{\otimes 2}$ is found.
Keywords: quantum channel, complete positiveness, positive mapping, divisibility, tensor product.
@article{INTO_2018_151_a10,
     author = {S. N. Filippov},
     title = {Tensor {Products} of {Quantum} {Mappings}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {117--125},
     publisher = {mathdoc},
     volume = {151},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_151_a10/}
}
TY  - JOUR
AU  - S. N. Filippov
TI  - Tensor Products of Quantum Mappings
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 117
EP  - 125
VL  - 151
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_151_a10/
LA  - ru
ID  - INTO_2018_151_a10
ER  - 
%0 Journal Article
%A S. N. Filippov
%T Tensor Products of Quantum Mappings
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 117-125
%V 151
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_151_a10/
%G ru
%F INTO_2018_151_a10
S. N. Filippov. Tensor Products of Quantum Mappings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 117-125. http://geodesic.mathdoc.fr/item/INTO_2018_151_a10/

[1] Filippov S. N., “Kvantovye otobrazheniya i kharakterizatsiya pereputannykh kvantovykh sostoyanii”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 138 (2017), 99–124

[2] Kholevo A. S., “Kvantovye teoremy kodirovaniya”, Usp. mat. nauk, 53:6 (324) (1998), 193–230 | DOI | MR | Zbl

[3] Kholevo A. S., “Kanaly, razrushayuschie stseplennost, v beskonechnykh razmernostyakh”, Probl. peredachi inform., 44:3 (2008), 3–18 | MR | Zbl

[4] Aubrun G., Szarek S. J., Two proofs of Størmer's theorem, arXiv: 1512.03293 [math.FA]

[5] Benatti F., Floreanini R., Romano R., “Complete positivity anddissipative factorized dynamics”, J. Phys. A: Math. Gen., 35 (2002), L351 | DOI | MR

[6] Benatti F., Chruściński D., Filippov S., “Tensor power of dynamical maps and positive versus completely positive divisibility”, Phys. Rev. A., 95, 012112 | DOI | MR

[7] Birkhoff G., “Tres observaciones sobre el algebra lineal”, Univ. Nac.Tucumán Rev. Ser. A., 5 (1946), 147 | MR | Zbl

[8] Breuer H.-P., Laine E.-M., Piilo J., Vacchini B., “Colloquium: Non-Markovian dynamics in open quantum systems”, Rev. Mod. Phys., 88 (2016), 021002 | DOI

[9] Breuer H.-P., Petruccione F., The theory of open quantum systems, Oxford Univ. Press, New York, 2002 | MR | Zbl

[10] Choi M.-D., “Completely positive linear maps on complex matrices”, Linear Algebra Appl., 10 (1975), 285 | DOI | MR | Zbl

[11] Chruściński D., Maniscalco S., “Degree of non-Markovianity ofquantum evolution”, Phys. Rev. Lett., 112 (2014), 120404 | DOI

[12] De Pillis J., “Linear transformations which preserve Hermitian andpositive semidefinite operators”, Pac. J. Math., 23 (1967), 129 | DOI | MR | Zbl

[13] De Vega I., Alonso D., “Dynamics of non-Markovian open quantum systems”, Rev. Mod. Phys., 89 (2017), 015001 | DOI | MR

[14] Filippov S. N., “PPT-inducing, distillation-prohibiting, and entanglement-binding quantum channels”, J. Russ. Laser Research., 35 (2014), 484. | DOI

[15] Filippov S. N., “Influence of deterministic attenuation andamplification of optical signals on entanglement and distillation of Gaussianand non-Gaussian quantum states”, EPJ Web Conf., 103 (2015), 03003 | DOI

[16] Filippov S. N., Frizen V. V., Kolobova D. V., Ultimate entanglement robustness of two-qubit states to general local noises, arXiv: 1708.08208[quant-ph]

[17] Filippov S. N., Magadov K. Yu., “Positive tensor products of qubit maps and $n$-tensor-stable positive qubit maps”, J. Phys. A: Math. Theor., 50 (2017), 055301 | DOI | MR | Zbl

[18] Filippov S. N., Magadov K. Yu., Jivulescu M. A., “Absolutelyseparating quantum maps and channels”, New J. Phys., 19 (2017), 083010 | DOI | MR

[19] Filippov S. N., Melnikov A. A., Ziman M., “Dissociation andannihilation of multipartite entanglement structure in dissipative quantumdynamics”, Phys. Rev. A., 88 (2013), 062328 | DOI

[20] Filippov S. N., Piilo J., Maniscalco S., Ziman M., Divisibility of quantum dynamical maps and collision models, arXiv: 1708.04994 [quant-ph]

[21] Filippov S. N., Rybár T., Ziman M., “Local two-qubitentanglement-annihilating channels”, Phys. Rev. A., 85 (2012), 012303 | DOI

[22] Filippov S. N., Ziman M., “Bipartite entanglement-annihilating maps:Necessary and sufficient conditions”, Phys. Rev. A., 88 (2013), 032316 | DOI

[23] Filippov S. N., Ziman M., “Entanglement sensitivity to signal attenuation and amplification”, Phys.Rev. A., 90 (2014), 010301(R) | DOI

[24] Giovannetti V., Palma G. M., “Master equations for correlated quantum channels”, Phys. Rev. Lett., 108 (2012), 040401 | DOI

[25] Gorini V., Kossakowski A., Sudarshan E. C. G., “Completely positive dynamical semigroups of $N$-level systems”, J. Math. Phys., 17 (1976), 821 | DOI | MR

[26] Hall M. J. W., “Complete positivity for time-dependent qubit masterequations”, J. Phys. A: Math. Theor., 41 (2008), 205302 | DOI | MR | Zbl

[27] Holevo A. S., Quantum systems, channels, information, Walter de Gruyter, Berlin, 2012 | MR

[28] Holevo A. S., Giovannetti V., “Quantum channels and their entropic characteristics”, Repts. Progr. Phys., 75 (2012), 046001 | DOI | MR

[29] Horodecki M., Horodecki P., Horodecki R., “Separability of mixedstates: necessary and sufficient conditions”, Phys. Lett. A., 223 (1996), 1 | DOI | MR | Zbl

[30] Horodecki M., Shor P. W., Ruskai M. B., “Entanglement breakingchannels”, Rev. Math. Phys., 15 (2003), 629 | DOI | MR | Zbl

[31] Horodecki R., Horodecki P., Horodecki M., Horodecki K., “Quantum entanglement”, Rev. Mod. Phys., 81 (2009), 865 | DOI | MR | Zbl

[32] Jamiołkowski A., “Linear transformations which preserve trace andpositive semidefiniteness of operators”, Repts. Math. Phys., 3 (1972), 275 | DOI | Zbl

[33] King C., “Maximization of capacity and $l_p$ norms for some product channels”, J. Math. Phys., 43 (2002), 1247 | DOI | MR | Zbl

[34] Lindblad G., “On the generators of quantum dynamical semigroups”, Commun. Math. Phys., 48 (1976), 119 | DOI | MR | Zbl

[35] Lorenzo S., Ciccarello F., Palma G. M., Composite quantum collision models, arXiv: 1705.03215 [quant-ph]

[36] Luchnikov I. A., Filippov S. N., “Quantum evolution in the stroboscopic limit of repeated measurements”, Phys. Rev. A., 95 (2017), 022113 | DOI

[37] Moravčíková L., Ziman M., “Entanglement-annihilating and entanglement-breaking channels”, J. Phys. A: Math. Theor., 43 (2010), 275306 | DOI | MR | Zbl

[38] Müller-Hermes A., Reeb D., Wolf M. M., “Positivity of linear maps under tensor powers”, J. Math. Phys., 57 (2016), 015202 | DOI | MR | Zbl

[39] Nielsen M. A., Chuang I. L., Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[40] Peres A., “Separability criterion for density matrices”, Phys. Rev. Lett., 77 (1996), 1413 | DOI | MR | Zbl

[41] Rau J., “Relaxation phenomena in spin and harmonic oscillatorsystems”, Phys. Rev., 129 (1963), 1880 | DOI | MR

[42] Rivas Á., Huelga S. F., Plenio M. B., “Entanglement and non-Markovianity of quantum evolutions”, Phys. Rev. Lett., 105 (2010), 050403 | DOI | MR

[43] Rivas Á., Huelga S. F., Plenio M. B., “Quantum non-Markovianity: characterization, quantification and detection”, Repts. Progr. Phys., 77 (2014), 094001 | DOI | MR

[44] Ruskai M. B., Szarek S., Werner E., “An analysis of completely-positive trace-preserving maps on $M_2$”, Linear Algebra Appl., 347 (2002), 159 | DOI | MR | Zbl

[45] Ruskai M. B. Qubit entanglement breaking channels, Rev. Math. Phys., 15 (2003), 643 | DOI | MR | Zbl

[46] Rybár T., Filippov S. N., Ziman M., Bužek V., “Simulation of indivisible qubit channels in collision models”, J. Phys. B: Atom. Molec. Opt. Phys., 45 (2012), 154006 | DOI

[47] Scarani V., Ziman M., Štelmachovič P., Gisin N., Bužek V., “Thermalizing quantum machines: Dissipation and entanglement”, Phys. Rev. Lett., 88 (2002), 097905 | DOI

[48] Schrödinger E., “Discussion of probability relations betweenseparated systems”, Math. Proc. Cambridge Philos. Soc., 31 (1935), 555–563 | DOI

[49] Schrödinger E., “Probability relations between separated systems”, Math. Proc. Cambridge Philos. Soc., 32 (1936), 446–452 | DOI

[50] Shor P. W., “Additivity of the classical capacity of entanglement-breaking quantum channels”, J. Math. Phys., 43 (2002), 4334 | DOI | MR | Zbl

[51] Størmer E. Positive linear maps of operator algebras, Acta Math., 110 (1963), 233 | DOI | MR

[52] von Neumann J., “A certain zero-sum two-person game equivalent to anoptimal assignment problem”, Ann. Math. Stud., 28 (1953), 5 | MR | Zbl

[53] Werner R. F., “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model”, Phys. Rev. A., 40 (1989), 4277 | DOI | Zbl

[54] Wolf M. M., Cirac J. I., “Dividing quantum channels”, Commun. Math.Phys., 279 (2008), 147 | DOI | MR | Zbl

[55] Wolf M. M., Eisert J., Cubitt T. S., Cirac J. I., “Assessing non-Markovian quantum dynamics”, Phys. Rev. Lett., 101 (2008), 150402 | DOI | MR | Zbl

[56] Ziman M., Bužek V., “Open system dynamics of simple collision models”, Quantum dynamics and information, eds. Olkiewicz R. et al., World Scientific, Singapore, 2011, 199–227

[57] Ziman M., Štelmachovič P., Bužek V., Hillery M., Scarani V., Gisin N., “Diluting quantum information: An analysis of information transfer in system-reservoir interactions”, Phys. Rev. A., 65 (2002), 042105 | DOI | MR