Tensor Products of Quantum Mappings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 117-125

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine properties of the tensor powers of quantum mappings $\Phi$. In particular, we review positivity properties of unitary and non-unitary qubit mappings $\Phi^{\otimes 2}$. For arbitrary finite-dimensional systems, we present the relationship between the positive and completely positive divisibility of dynamical mappings $\Phi_t^{\otimes 2}$ and $\Phi_t$. A criterion of annihilation of entanglement by an arbitrary qubit mapping $\Phi^{\otimes 2}$ is found.
Keywords: quantum channel, complete positiveness, positive mapping, divisibility, tensor product.
@article{INTO_2018_151_a10,
     author = {S. N. Filippov},
     title = {Tensor {Products} of {Quantum} {Mappings}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {117--125},
     publisher = {mathdoc},
     volume = {151},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_151_a10/}
}
TY  - JOUR
AU  - S. N. Filippov
TI  - Tensor Products of Quantum Mappings
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 117
EP  - 125
VL  - 151
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_151_a10/
LA  - ru
ID  - INTO_2018_151_a10
ER  - 
%0 Journal Article
%A S. N. Filippov
%T Tensor Products of Quantum Mappings
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 117-125
%V 151
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_151_a10/
%G ru
%F INTO_2018_151_a10
S. N. Filippov. Tensor Products of Quantum Mappings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 117-125. http://geodesic.mathdoc.fr/item/INTO_2018_151_a10/