Trace and Commutators of Measurable Operators Affiliated to a von~Neumann Algebra
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 10-20

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present new properties of the space $L_1(\mathcal{M},\tau)$ of integrable (with respect to the trace $\tau$) operators affiliated to a semifinite von Neumann algebra ${\mathcal M}$. For self-adjoint $\tau$-measurable operators $A$ and $B$, we find sufficient conditions of the $\tau$-integrability of the operator $\lambda I-AB$ and the real-valuedness of the trace $\tau(\lambda I- AB)$, where $\lambda \in \mathbb{R}$. Under these conditions, $[A,B]=AB-BA\in L_1(\mathcal{M},\tau)$ and $\tau([A, B])=0$. For $\tau$-measurable operators $A$ and $B=B^2$, we find conditions that are sufficient for the validity of the relation $\tau([A,B])=0$. For an isometry $U\in\mathcal{M}$ and a nonnegative $\tau$-measurable operator $A$, we prove that $U-A \in L_1(\mathcal{M},\tau)$ if and only if $I-A, I-U \in L_1(\mathcal{M},\tau)$. For a $\tau$-measurable operator $A$, we present estimates of the trace of the autocommutator $[A^*,A]$. Let self-adjoint $\tau$-measurable operators $X\geq 0$ and $Y$ are such that $[X^{1/2}, Y X^{1/2}] \in L_1(\mathcal{M},\tau)$. Then $\tau ([X^{1/2}, Y X^{1/2}])=it$, where $t \in \mathbb{R}$ and $t=0$ for $XY \in L_1(\mathcal{M},\tau)$.
Keywords: Hilbert space, linear operator, von Neumann algebra, normal semifinite trace, measurable operator, integrable operator, commutator, autocommutator.
@article{INTO_2018_151_a1,
     author = {A. M. Bikchentaev},
     title = {Trace and {Commutators} of {Measurable} {Operators} {Affiliated} to a {von~Neumann} {Algebra}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {10--20},
     publisher = {mathdoc},
     volume = {151},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_151_a1/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Trace and Commutators of Measurable Operators Affiliated to a von~Neumann Algebra
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 10
EP  - 20
VL  - 151
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_151_a1/
LA  - ru
ID  - INTO_2018_151_a1
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Trace and Commutators of Measurable Operators Affiliated to a von~Neumann Algebra
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 10-20
%V 151
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_151_a1/
%G ru
%F INTO_2018_151_a1
A. M. Bikchentaev. Trace and Commutators of Measurable Operators Affiliated to a von~Neumann Algebra. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 10-20. http://geodesic.mathdoc.fr/item/INTO_2018_151_a1/