Trace and Commutators of Measurable Operators Affiliated to a von~Neumann Algebra
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 10-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present new properties of the space $L_1(\mathcal{M},\tau)$ of integrable (with respect to the trace $\tau$) operators affiliated to a semifinite von Neumann algebra ${\mathcal M}$. For self-adjoint $\tau$-measurable operators $A$ and $B$, we find sufficient conditions of the $\tau$-integrability of the operator $\lambda I-AB$ and the real-valuedness of the trace $\tau(\lambda I- AB)$, where $\lambda \in \mathbb{R}$. Under these conditions, $[A,B]=AB-BA\in L_1(\mathcal{M},\tau)$ and $\tau([A, B])=0$. For $\tau$-measurable operators $A$ and $B=B^2$, we find conditions that are sufficient for the validity of the relation $\tau([A,B])=0$. For an isometry $U\in\mathcal{M}$ and a nonnegative $\tau$-measurable operator $A$, we prove that $U-A \in L_1(\mathcal{M},\tau)$ if and only if $I-A, I-U \in L_1(\mathcal{M},\tau)$. For a $\tau$-measurable operator $A$, we present estimates of the trace of the autocommutator $[A^*,A]$. Let self-adjoint $\tau$-measurable operators $X\geq 0$ and $Y$ are such that $[X^{1/2}, Y X^{1/2}] \in L_1(\mathcal{M},\tau)$. Then $\tau ([X^{1/2}, Y X^{1/2}])=it$, where $t \in \mathbb{R}$ and $t=0$ for $XY \in L_1(\mathcal{M},\tau)$.
Keywords: Hilbert space, linear operator, von Neumann algebra, normal semifinite trace, measurable operator, integrable operator, commutator, autocommutator.
@article{INTO_2018_151_a1,
     author = {A. M. Bikchentaev},
     title = {Trace and {Commutators} of {Measurable} {Operators} {Affiliated} to a {von~Neumann} {Algebra}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {10--20},
     publisher = {mathdoc},
     volume = {151},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_151_a1/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Trace and Commutators of Measurable Operators Affiliated to a von~Neumann Algebra
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 10
EP  - 20
VL  - 151
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_151_a1/
LA  - ru
ID  - INTO_2018_151_a1
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Trace and Commutators of Measurable Operators Affiliated to a von~Neumann Algebra
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 10-20
%V 151
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_151_a1/
%G ru
%F INTO_2018_151_a1
A. M. Bikchentaev. Trace and Commutators of Measurable Operators Affiliated to a von~Neumann Algebra. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 10-20. http://geodesic.mathdoc.fr/item/INTO_2018_151_a1/

[1] Bikchentaev A. M., “Ob odnom svoistve $L_p$-prostranstv na polukonechnykh algebrakh fon Neimana”, Mat. zametki, 64:2 (1998), 185–190 | DOI | Zbl

[2] Bikchentaev A. M., “K teorii $\tau$-izmerimykh operatorov, prisoedinennykh k polukonechnoi algebre fon Neimana”, Mat. zametki, 98:3 (2015), 337–348 | DOI | MR | Zbl

[3] Bikchentaev A. M., “O skhodimosti integriruemykh operatorov, prisoedinennykh k konechnoi algebre fon Neimana”, Tr. Mat. in-ta RAN im. V. A. Steklova., 293 (2016), 73–82 | DOI | Zbl

[4] Bikchentaev A. M., “Ob idempotentnykh $\tau$-izmerimykh operatorakh, prisoedinennykh k algebre fon Neimana”, Mat. zametki, 100:4 (2016), 492–503 | DOI | MR | Zbl

[5] Bikchentaev A. M., “Sled i integriruemye operatory, prisoedinennye k polukonechnoi algebre fon Neimana”, Dokl. RAN, 466:2 (2016), 137–140 | DOI | MR | Zbl

[6] Bikchentaev A. M., “Ob operatorno monotonnykh i operatorno vypuklykh funktsiyakh”, Izv. vuzov. Mat., 5 (2016), 70–74 | Zbl

[7] Bikchentaev A. M., “O $\tau$-kompaktnosti proizvedeniya $\tau$-izmerimykh operatorov, prisoedinennykh k polukonechnoi algebre fon Neimana”, Itogi nauki i tekhn. Sovr. mat. prilozh. Tematich. obzory., 140 (2017), 78–87

[8] Bikchentaev A. M., “Raznosti idempotentov v $C^*$-algebrakh i kvantovyi effekt Kholla”, Teor. mat. fiz., 195:1 (2018), 75–80 | DOI | MR | Zbl

[9] Glazman I. M., Lyubich Yu. I., Konechnomernyi lineinyi analiz, Nauka, M., 1969 | MR

[10] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[11] Dauitbek D., Tokmagambetov N. E., Tulenov K. S., “Kommutatornye neravenstva, svyazannye s polyarnymi razlozheniyami $\tau$-izmerimykh operatorov”, Izv. vuzov. Mat., 7 (2014), 56–62 | MR | Zbl

[12] Sukochev F. A., “O gipoteze A. M. Bikchentaeva”, Izv. vuzov. Mat., 6 (2012), 67–70 | Zbl

[13] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970

[14] Bikchentaev A. M., “Majorization for products of measurable operators”, Int. J. Theor. Phys., 37:1 (1998), 571–576 | DOI | MR | Zbl

[15] Bikchentaev A. M., “Integrable products of measurable operators”, Lobachevskii J. Math., 37:4 (2016), 397–403 | DOI | MR | Zbl

[16] Brown L. G., Kosaki H., “Jensen's inequality in semifinite von Neumann algebras”, J. Operator Theory, 23:1 (1990), 3–19 | MR | Zbl

[17] Dykema K. J., Kalton N. J., “Sums of commutators in ideals and modulesof type II factors”, Ann. Inst. Fourier (Grenoble), 55:3 (2005), 931–971 | DOI | MR | Zbl

[18] Dykema K., Skripka A., “On single commutators in II$_1$-factors”, Proc. Am. Math. Soc., 140:3 (2012), 931–940. | DOI | MR | Zbl

[19] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau$-measurable operators”, Pac. J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl

[20] Hiai F., Kosaki H., Means of Hilbert space operators, Lect. Notes Math., v. 1820, Springer-Verlag, Berlin, 2003 | MR | Zbl

[21] Kosaki H., “On the continuity of the map $\varphi \mapsto|\varphi|$ from the predual of a $W^{\ast}$-algebra”, J. Funct. Anal., 59:1 (1984), 123–131 | DOI | MR | Zbl

[22] Larotonda G., “Norm inequalities in operator ideals”, J. Funct. Anal. yr 2008, 255:11, 3208–3228 | MR | Zbl

[23] Nelson E., “Notes on non-commutative integration”, J. Funct. Anal. yr 1974, 15:2, 103–116 | DOI | MR | Zbl

[24] Segal I. E., “A noncommutative extension of abstract integration”, Ann. Math., 57:3 (1953), 401–457 | DOI | MR | Zbl

[25] Sukochev F. A., “On a conjecture of A. Bikchentaev”, Proc. Symp. Pure Math., 87 (2013), 327–339 | DOI | MR | Zbl

[26] Takesaki M., Theory of operator algebras. Vol. I, Springer-Verlag, Berlin, 1979 | MR

[27] Yeadon F. J., “Noncommutative $L^p$-spaces”, Math. Proc. Cambridge Phil. Soc., 77:1 (1975), 91–102 | DOI | MR | Zbl