On Various Functional Representations of the Space of Schwarz Operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss various representations in which the space of Schwarz operators $S$ turns into the space of basic functions, whereas the dual space $S'$ turns into the space of generalized functions.
Keywords: quantum tomography, functional representation, space of Schwarz operators.
@article{INTO_2018_151_a0,
     author = {G. G. Amosov},
     title = {On {Various} {Functional} {Representations} of the {Space} of {Schwarz} {Operators}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {151},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_151_a0/}
}
TY  - JOUR
AU  - G. G. Amosov
TI  - On Various Functional Representations of the Space of Schwarz Operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 3
EP  - 9
VL  - 151
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_151_a0/
LA  - ru
ID  - INTO_2018_151_a0
ER  - 
%0 Journal Article
%A G. G. Amosov
%T On Various Functional Representations of the Space of Schwarz Operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 3-9
%V 151
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_151_a0/
%G ru
%F INTO_2018_151_a0
G. G. Amosov. On Various Functional Representations of the Space of Schwarz Operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 3-9. http://geodesic.mathdoc.fr/item/INTO_2018_151_a0/

[1] Amosov G. G., Korennoi Ya. A., Manko V. I., “O vychislenii srednikh znachenii kvantovykh nablyudaemykh v predstavlenii opticheskoi tomografii”, Teor. mat. fiz., 171 (2012), 475–482 | DOI | Zbl

[2] Amosov G. G., “On tomographic representation on the plane of the space of Schwartz operators and its dual”, Lobachevskii J. Math., 38 (2017), 595–599 | DOI | MR | Zbl

[3] Bertrand J., Bertrand P., “A tomographic approach to Wigner’s function”, Found. Phys., 17 (1987), 397–405 | DOI | MR

[4] Cahill K. E., Glauber R. J., “Density operators and quasiprobability distributions”, Phys. Rev., 177 (1969), 1882–1902 | DOI

[5] D'Ariano G. M., Maccone L., Paris M. G. A., “Quarum of observables for universal quantum estimation”, J. Phys. A: Math. Gen., 34:1 (2001), 93–104 | DOI | MR

[6] Filippov S. N., Man'ko V. I., “Spin tomography and star-product kernel for qubits and qutrits”, J. Russ. Laser Res., 30 (2009), 129–145 | DOI

[7] Filippov S. N., Man'ko V. I., “Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics”, J. Russ. Laser Res., 31 (2010), 211–231 | DOI | MR

[8] Holevo A. S., Quantum systems, channels, information, De Gruyter, 2012 | MR | Zbl

[9] Keyl M., Kiukas J., Werner R. F., “Schwartz operators”, Rev. Math. Phys., 28:3 (2016), 1630001 | DOI | MR | Zbl

[10] Manko O. V., Manko V. I., Marmo G., “Alternative commutation relations, star products and tomography”, J. Phys. A: Math. Gen., 35:3 (2002), 699–720 | DOI | MR

[11] Moyal J. E., “Quantum mechanics as a statistical theory”, Math. Proc. Cambridge Phil. Soc., 45:01 (1949), 99–124 | DOI | MR | Zbl

[12] Wigner E., “On the quantum correction for thermodynamic equilibrium”, Phys. Rev., 40:5 (1932), 749–759 | DOI