Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_151_a0, author = {G. G. Amosov}, title = {On {Various} {Functional} {Representations} of the {Space} of {Schwarz} {Operators}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--9}, publisher = {mathdoc}, volume = {151}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_151_a0/} }
TY - JOUR AU - G. G. Amosov TI - On Various Functional Representations of the Space of Schwarz Operators JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 3 EP - 9 VL - 151 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_151_a0/ LA - ru ID - INTO_2018_151_a0 ER -
%0 Journal Article %A G. G. Amosov %T On Various Functional Representations of the Space of Schwarz Operators %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 3-9 %V 151 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_151_a0/ %G ru %F INTO_2018_151_a0
G. G. Amosov. On Various Functional Representations of the Space of Schwarz Operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Quantum probability, Tome 151 (2018), pp. 3-9. http://geodesic.mathdoc.fr/item/INTO_2018_151_a0/
[1] Amosov G. G., Korennoi Ya. A., Manko V. I., “O vychislenii srednikh znachenii kvantovykh nablyudaemykh v predstavlenii opticheskoi tomografii”, Teor. mat. fiz., 171 (2012), 475–482 | DOI | Zbl
[2] Amosov G. G., “On tomographic representation on the plane of the space of Schwartz operators and its dual”, Lobachevskii J. Math., 38 (2017), 595–599 | DOI | MR | Zbl
[3] Bertrand J., Bertrand P., “A tomographic approach to Wigner’s function”, Found. Phys., 17 (1987), 397–405 | DOI | MR
[4] Cahill K. E., Glauber R. J., “Density operators and quasiprobability distributions”, Phys. Rev., 177 (1969), 1882–1902 | DOI
[5] D'Ariano G. M., Maccone L., Paris M. G. A., “Quarum of observables for universal quantum estimation”, J. Phys. A: Math. Gen., 34:1 (2001), 93–104 | DOI | MR
[6] Filippov S. N., Man'ko V. I., “Spin tomography and star-product kernel for qubits and qutrits”, J. Russ. Laser Res., 30 (2009), 129–145 | DOI
[7] Filippov S. N., Man'ko V. I., “Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics”, J. Russ. Laser Res., 31 (2010), 211–231 | DOI | MR
[8] Holevo A. S., Quantum systems, channels, information, De Gruyter, 2012 | MR | Zbl
[9] Keyl M., Kiukas J., Werner R. F., “Schwartz operators”, Rev. Math. Phys., 28:3 (2016), 1630001 | DOI | MR | Zbl
[10] Manko O. V., Manko V. I., Marmo G., “Alternative commutation relations, star products and tomography”, J. Phys. A: Math. Gen., 35:3 (2002), 699–720 | DOI | MR
[11] Moyal J. E., “Quantum mechanics as a statistical theory”, Math. Proc. Cambridge Phil. Soc., 45:01 (1949), 99–124 | DOI | MR | Zbl
[12] Wigner E., “On the quantum correction for thermodynamic equilibrium”, Phys. Rev., 40:5 (1932), 749–759 | DOI