Problems of Qualitative Analysis in the Spatial Dynamics of Rigid Bodies Interacting with Media
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 150 (2018), pp. 130-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the problem on the spatial free deceleration of a rigid body in a resistive medium under the assumption that the interaction of the homogeneous axisymmetric body with the medium is concentrated on the frontal part of the surface, which has the shape of a flat circular disk. In earlier works of the author, under the simplest assumptions on interaction forces, the impossibility of oscillations with bounded amplitude was proved. Note that exact analytic description of forces and moments of the body-medium interaction is unknown, so we use the method of “embedding” of the problem into a wider class of problems; this allows one to obtain a sufficiently complete qualitative description of the motion of the body. For dynamical systems considered, we obtain particular solutions and families of phase portraits of quasi-velocities in the three-dimensional space that consist of countable sets of nonequivalent portraits with different nonlinear qualitative properties.
Keywords: rigid body, resistive medium, qualitative analysis, numerical analysis.
@article{INTO_2018_150_a7,
     author = {M. V. Shamolin},
     title = {Problems of {Qualitative} {Analysis} in the {Spatial} {Dynamics} of {Rigid} {Bodies} {Interacting} with {Media}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {130--142},
     publisher = {mathdoc},
     volume = {150},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_150_a7/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Problems of Qualitative Analysis in the Spatial Dynamics of Rigid Bodies Interacting with Media
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 130
EP  - 142
VL  - 150
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_150_a7/
LA  - ru
ID  - INTO_2018_150_a7
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Problems of Qualitative Analysis in the Spatial Dynamics of Rigid Bodies Interacting with Media
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 130-142
%V 150
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_150_a7/
%G ru
%F INTO_2018_150_a7
M. V. Shamolin. Problems of Qualitative Analysis in the Spatial Dynamics of Rigid Bodies Interacting with Media. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 150 (2018), pp. 130-142. http://geodesic.mathdoc.fr/item/INTO_2018_150_a7/

[16] Byushgens G. S., Studnev R. V., Dinamika prodolnogo i bokovogo dvizheniya, Mashinostroenie, M., 1969

[17] Byushgens G. S., Studnev R. V., Dinamika samoleta. Prostranstvennoe dvizhenie, Mashinostroenie, M., 1988

[18] Eroshin V. A., Samsonov V. A., Shamolin M. V., “Modelnaya zadacha o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii”, Izv. RAN. Mekh. zhidk. gaza, 3 (1995), 23–27

[19] Gurevich M. I., Teoriya strui idealnoi zhidkosti, Nauka, M., 1979

[20] Prandtl L., Gidroaeromekhanika, IL, M., 1949

[21] Samsonov V. A., Shamolin M. V., Eroshin V. A., Makarshin V. M., Matematicheskoe modelirovanie v zadache o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii, In-t mekhaniki MGU, M., 1995

[22] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229

[23] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135

[24] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR

[25] Shamolin M. V., “Suschestvovanie i edinstvennost traektorii, imeyuschikh v kachestve predelnykh mnozhestv beskonechno udalennye tochki, dlya dinamicheskikh sistem na ploskosti”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1993, no. 1, 68–71 | MR

[26] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, Usp. mat. nauk, 52:3 (1997), 177–178 | DOI | MR | Zbl

[27] Shamolin M. V., “Novoe semeistvo fazovykh portretov v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN, 371:4 (2000), 480–483

[28] Shamolin M. V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Ekzamen, M., 2007

[29] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237

[30] Shamolin M. V., K zadache o dvizhenii tela s perednim ploskim tortsom v soprotivlyayuscheisya srede, In-t mekhaniki MGU, M., 2010

[31] Shamolin M. V., “Mnogoobrazie sluchaev integriruemosti v dinamike malomernogo i mnogomernogo tverdogo tela v nekonservativnom pole sil”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory, 125 (2013), 5–254, VINITI, M.

[32] Shamolin M. V., “Modelirovanie dvizheniya tverdogo tela v soprotivlyayuscheisya srede i analogii s vikhrevymi dorozhkami”, Mat. model., 27:1 (2015), 33–53 | MR | Zbl