Examples of Integrable Systems with Dissipation on the Tangent Bundles of Four-Dimensional Manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 150 (2018), pp. 119-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the integrability of certain classes of dynamical systems on the tangent bundles of four-dimensional manifolds (systems with four degrees of freedom). Force field considered possess so-called variable dissipation; they are generalizations of fields studied earlier. This paper continues earlier works of the author devoted to systems on the tangent bundles of two- and three-dimensional manifolds.
Keywords: multidimensional dynamical system, nonconservative force field, integrability, transcendental first integral.
@article{INTO_2018_150_a6,
     author = {M. V. Shamolin},
     title = {Examples of {Integrable} {Systems} with {Dissipation} on the {Tangent} {Bundles} of {Four-Dimensional} {Manifolds}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {119--129},
     publisher = {mathdoc},
     volume = {150},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_150_a6/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Examples of Integrable Systems with Dissipation on the Tangent Bundles of Four-Dimensional Manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 119
EP  - 129
VL  - 150
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_150_a6/
LA  - ru
ID  - INTO_2018_150_a6
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Examples of Integrable Systems with Dissipation on the Tangent Bundles of Four-Dimensional Manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 119-129
%V 150
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_150_a6/
%G ru
%F INTO_2018_150_a6
M. V. Shamolin. Examples of Integrable Systems with Dissipation on the Tangent Bundles of Four-Dimensional Manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 150 (2018), pp. 119-129. http://geodesic.mathdoc.fr/item/INTO_2018_150_a6/

[1] Bogoyavlenskii O. I., “Nekotorye integriruemye sluchai uravnenii Eilera”, Dokl. AN SSSR, 287:5 (1986), 1105–1108 | MR

[2] Veselov A. P., “Ob usloviyakh integriruemosti uravnenii Eilera na so(4)”, Dokl. AN SSSR, 270:6 (1983), 1298–1300 | MR | Zbl

[3] Dubrovin B. A., Novikov S. P., “O skobkakh Puassona gidrodinamicheskogo tipa”, Dokl. AN SSSR, 219:2 (1984), 228–237

[4] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1979 | MR

[5] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971

[6] Manakov S. V., “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. anal. prilozh., 10:4 (1976), 93–94 | MR | Zbl

[7] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229

[8] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135

[9] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR

[10] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Usp. mat. nauk, 53:3 (1998), 209–210 | DOI | MR | Zbl

[11] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237

[12] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN, 437:2 (2011), 190–193 | MR

[13] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN, 442:4 (2012), 479–481 | MR

[14] Shamolin M. V., “Mnogoobrazie sluchaev integriruemosti v dinamike malomernogo i mnogomernogo tverdogo tela v nekonservativnom pole sil”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory, 125 (2013), 5–254

[15] Shamolin M. V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere i prilozheniya”, Fundam. prikl. mat., 20:4 (2015), 3–231 | MR

[16] Shamolin M. V., “Mnogomernyi mayatnik v nekonservativnom silovom pole”, Dokl. RAN, 460:2 (2015), 165–169 | DOI | MR

[17] Shamolin M. V., “Polnyi spisok pervykh integralov dinamicheskikh uravnenii dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN, 461:5 (2015), 533–536 | DOI | MR

[18] Shamolin M. V., “Polnyi spisok pervykh integralov uravnenii dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN, 464:6 (2015), 688–692 | DOI | MR

[19] Shamolin M. V., “Novye sluchai integriruemosti sistem s dissipatsiei na kasatelnykh rassloeniyakh k dvumernoi i trekhmernoi sferam”, Dokl. RAN, 471:5 (2016), 547–551 | DOI | MR