Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 150 (2018), pp. 110-118
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove the integrability of certain classes of dynamical systems on the tangent bundles of three-dimensional manifolds (systems with three degrees of freedom). Force field considered possess so-called variable dissipation; they are generalizations of fields studied earlier.
Keywords:
dynamical system, nonconservative force field, integrability, transcendental first integral.
@article{INTO_2018_150_a5,
author = {M. V. Shamolin},
title = {Examples of {Integrable} {Systems} with {Dissipation} on the {Tangent} {Bundles} of {Three-Dimensional} {Manifolds}},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {110--118},
publisher = {mathdoc},
volume = {150},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2018_150_a5/}
}
TY - JOUR AU - M. V. Shamolin TI - Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 110 EP - 118 VL - 150 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_150_a5/ LA - ru ID - INTO_2018_150_a5 ER -
%0 Journal Article %A M. V. Shamolin %T Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 110-118 %V 150 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_150_a5/ %G ru %F INTO_2018_150_a5
M. V. Shamolin. Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 150 (2018), pp. 110-118. http://geodesic.mathdoc.fr/item/INTO_2018_150_a5/