Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 150 (2018), pp. 110-118

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the integrability of certain classes of dynamical systems on the tangent bundles of three-dimensional manifolds (systems with three degrees of freedom). Force field considered possess so-called variable dissipation; they are generalizations of fields studied earlier.
Keywords: dynamical system, nonconservative force field, integrability, transcendental first integral.
@article{INTO_2018_150_a5,
     author = {M. V. Shamolin},
     title = {Examples of {Integrable} {Systems} with {Dissipation} on the {Tangent} {Bundles} of {Three-Dimensional} {Manifolds}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {110--118},
     publisher = {mathdoc},
     volume = {150},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_150_a5/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 110
EP  - 118
VL  - 150
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_150_a5/
LA  - ru
ID  - INTO_2018_150_a5
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 110-118
%V 150
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_150_a5/
%G ru
%F INTO_2018_150_a5
M. V. Shamolin. Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 150 (2018), pp. 110-118. http://geodesic.mathdoc.fr/item/INTO_2018_150_a5/