Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 150 (2018), pp. 110-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the integrability of certain classes of dynamical systems on the tangent bundles of three-dimensional manifolds (systems with three degrees of freedom). Force field considered possess so-called variable dissipation; they are generalizations of fields studied earlier.
Keywords: dynamical system, nonconservative force field, integrability, transcendental first integral.
@article{INTO_2018_150_a5,
     author = {M. V. Shamolin},
     title = {Examples of {Integrable} {Systems} with {Dissipation} on the {Tangent} {Bundles} of {Three-Dimensional} {Manifolds}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {110--118},
     publisher = {mathdoc},
     volume = {150},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_150_a5/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 110
EP  - 118
VL  - 150
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_150_a5/
LA  - ru
ID  - INTO_2018_150_a5
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 110-118
%V 150
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_150_a5/
%G ru
%F INTO_2018_150_a5
M. V. Shamolin. Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 150 (2018), pp. 110-118. http://geodesic.mathdoc.fr/item/INTO_2018_150_a5/

[4] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1979 | MR

[5] Dubrovin B. A., Novikov S. P., “O skobkakh Puassona gidrodinamicheskogo tipa”, Dokl. AN SSSR, 219:2 (1984), 228–237

[6] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971

[7] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229

[8] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135

[9] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR

[10] Shamolin M. V., “Suschestvovanie i edinstvennost traektorii, imeyuschikh v kachestve predelnykh mnozhestv beskonechno udalennye tochki, dlya dinamicheskikh sistem na ploskosti”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1993, no. 1, 68–71 | MR

[11] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, Usp. mat. nauk, 52:3 (1997), 177–178 | DOI | MR | Zbl

[12] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Usp. mat. nauk, 53:3 (1998), 209–210 | DOI | MR | Zbl

[13] Shamolin M. V., “Novoe semeistvo fazovykh portretov v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN, 371:4 (2000), 480–483

[14] Shamolin M. V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Ekzamen, M., 2007

[15] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237

[16] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN, 437:2 (2011), 190–193 | MR

[17] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN, 442:4 (2012), 479–481 | MR

[18] Shamolin M. V., “Mnogoobrazie sluchaev integriruemosti v dinamike malomernogo i mnogomernogo tverdogo tela v nekonservativnom pole sil”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory, 125 (2013), 5–254

[19] Shamolin M. V., “Modelirovanie dvizheniya tverdogo tela v soprotivlyayuscheisya srede i analogii s vikhrevymi dorozhkami”, Mat. model., 27:1 (2015), 33–53 | MR | Zbl

[20] Shamolin M. V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere i prilozheniya”, Fundam. prikl. mat., 20:4 (2015), 3–231 | MR

[21] Shamolin M. V., “Novye sluchai integriruemosti sistem s dissipatsiei na kasatelnykh rassloeniyakh k dvumernoi i trekhmernoi sferam”, Dokl. RAN, 471:5 (2016), 547–551 | DOI | MR