Eigenvalue Problems for Tensor-Block Matrices and Their Applications to Mechanics
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 150 (2018), pp. 40-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we state and examine the eigenvalue problem for symmetric tensor-block matrices of arbitrary even rank and arbitrary size $m\times m$, $m\geq 1$. We present certain definitions and theorems of the theory of tensor-block matrices. We obtain formulas that express classical invariants (that are involved in the characteristic equation) of a tensor-block matrix of arbitrary even rank and size $2\times2$ through the first invariants of powers of the same tensor-block matrix and also inverse formulas. A complete orthonormal system of tensor eigencolumns for a tensor-block matrix of arbitrary even rank and size $2\times2$ is constructed. The generalized eigenvalue problem for a tensor-block matrix is stated. As a particular case, the tensor-block matrix of tensors of elasticity moduli is considered. We also present canonical representations of the specific energy of deformation and defining relations. We propose a classification of anisotropic micropolar linearly elastic media that do not possess a symmetry center.
Keywords: eigenvalue problem for a tensor-block matrix, tensor column, eigentensor, anisotropy symbol of a tensor-block matrix, anisotrop symbol of a material.
@article{INTO_2018_150_a2,
     author = {M. U. Nikabadze},
     title = {Eigenvalue {Problems} for {Tensor-Block} {Matrices} and {Their} {Applications} to {Mechanics}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {40--77},
     publisher = {mathdoc},
     volume = {150},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_150_a2/}
}
TY  - JOUR
AU  - M. U. Nikabadze
TI  - Eigenvalue Problems for Tensor-Block Matrices and Their Applications to Mechanics
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 40
EP  - 77
VL  - 150
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_150_a2/
LA  - ru
ID  - INTO_2018_150_a2
ER  - 
%0 Journal Article
%A M. U. Nikabadze
%T Eigenvalue Problems for Tensor-Block Matrices and Their Applications to Mechanics
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 40-77
%V 150
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_150_a2/
%G ru
%F INTO_2018_150_a2
M. U. Nikabadze. Eigenvalue Problems for Tensor-Block Matrices and Their Applications to Mechanics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 150 (2018), pp. 40-77. http://geodesic.mathdoc.fr/item/INTO_2018_150_a2/

[1] Aleksandrov K. S., Uprugie svoistva anizotropnykh sred, Diss. na soisk. uch. step. dokt. fiz.-mat nauk, In-t kristallografii AN SSSR, M., 1967

[2] Vekua I. N., Osnovy tenzornogo analiza i teorii kovariantov, Nauka, M., 1978 | MR

[3] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR

[4] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1974

[5] Kupradze V. D., Gegelia T. G., Basheleishvili M. O., Burchuladze T. V., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976 | MR

[6] Lure K. A., “Nekotorye zadachi optimalnogo izgiba i rastyazheniya uprugikh plastin”, Izv. AN SSSR. Mekh. tv. tela, 1979, no. 6, 86–93

[7] Lyav A., Matematicheskaya teoriya uprugosti, ONTI, M.-L., 1935

[8] Matchenko I. N., Sobstvennye uprugie i plasticheskie sostoyaniya anizotropnykh sred, Diss. na soisk. uch. step. dokt. fiz.-mat. nauk, Tulsk. gos. un-t, Tula, 2004

[9] Minkevich L. M., “Predstavlenie tenzorov uprugosti i podatlivosti cherez sobstvennye tenzory”, Voprosy dinamiki mekhanicheskikh sistem vibroudarnogo deistviya, Novosibirsk, NETI, 1973, 107–110

[10] Nikabadze M. U., “K zadache o nakhozhdenii u tenzora chetnogo ranga sobstvennykh znachenii i sobstvennykh tenzorov”, Izv. RAN. Mekh. tv. tela, 2008, no. 4, 77–94

[11] Nikabadze M. U., “Nekotorye voprosy tenzornogo ischisleniya s prilozheniyami k mekhanike”, Dep. v VINITI RAN 05.08.13, no. 231-V2013

[12] Nikabadze M. U., “K postroeniyu sobstvennykh tenzornykh stolbtsov v mikropolyarnoi lineinoi teorii uprugosti”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2014, no. 1, 30–39 | MR | Zbl

[13] Nikabadze M. U., “O nekotorykh voprosakh tenzornogo ischisleniya s prilozheniyami k mekhanike”, Sovr. mat. Fundam. napr., 55 (2015), 3–194

[14] Ostrosablin N. I., “O strukrure tenzora modulei uprugosti. Sobstvennye uprugie sostoyaniya”, Dinamika sploshnoi sredy, v. 66, In-t gidromekhaniki im. M. A. Lavrenteva SO AN SSSR, Novosibirsk, 1984, 113–125

[15] Ostrosablin N. I., “O strukture tenzora modulei uprugosti i klassifikatsiya anizotropnykh materialov”, Zh. prikl. mekh. tekhn. fiz., 1986, no. 4, 127–135

[16] Ostrosablin N. I., “Sobstvennye moduli uprugosti i sostoyaniya dlya materialov kristallograficheskikh singonii”, Dinamika sploshnoi sredy, v. 75, In-t gidromekhaniki im. M. A. Lavrenteva SO AN SSSR, Novosibirsk, 1986, 113–125

[17] Ostrosablin N. I., Anizotropiya i obschie resheniya uravnenii lineinoi teorii uprugosti, Diss. na soisk. uch. step. dokt. fiz.-mat. nauk, In-t gidromekhaniki im. M. A. Lavrenteva SO RAN, Novosibirsk, 2000

[18] Pobedrya B. E., “Teoriya plastichnosti anizotropnykh materialov”, Prikladnye problemy prochnosti i plastichnosti, v. 26, Gorkii, 1984, 110–115

[19] Pobedrya B. E., “Teoriya techeniya anizotropnoi sredy”, Prochnost, plastichnost i vyazkouprugost materialov i konstruktsii, UNTs AN SSSR, Sverdlovsk, 1986, 101–108

[20] Pobedrya B. E., “O teorii plastichnosti transversalno-izotropnykh materialov”, Izv. AN SSSR. Mekh. tv. tela, 1990, no. 3, 96–101

[21] Pobedrya B. E., “O teorii opredelyayuschikh sootnoshenii v mekhanike deformiruemogo tverdogo tela”, Problemy mekhaniki. K 90-letiyu so dnya rozhdeniya A. Yu. Ishlinskogo, ed. D. M. Klimov, Fizmatlit, M., 2003, 635–657

[22] Revuzhenko A. F., Chanyshev A. I., Shemyakin E. I., “Matematicheskie modeli uprugoplasticheskikh tel”, Aktualnye problemy vychislitelnoi matematiki i matematicheskoe modelirovanie, Nauka, Novosibirsk, 1985, 108–119

[23] Rykhlevskii Ya., «CEIIINOSSSTTUV»: Matematicheskaya struktura uprugikh tel, IPM AN SSSR, M., 1983

[24] Rykhlevskii Ya., “O zakone Guka”, Prikl. mat. mekh., 48:3 (1984), 420–435 | MR

[25] Tolokonnikov L. A., Matchenko N. M., “O predstavleniyakh predelnykh uslovii dlya nachalno anizotropnykh tel”, Probl. prochnosti, 1974, no. 3, 54–56

[26] Uotkins D. S., Osnovy matrichnykh vychislenii, BINOM. Laboratoriya znanii, M., 2006

[27] Faddeev D. K., Sominskii I. S., Zadachi po vysshei algebre, Lan, SPb., 1999 | MR

[28] Chanyshev A. I., “O plastichnosti anizotropnykh sred”, Zh. prikl. mekh. tekhn. fiz., 1984, no. 2, 149–151

[29] Chanyshev A. I., “K resheniyu zadach o predelnykh nagruzkakh dlya zhestkoplasticheskogo anizotropnogo tela”, Zh. prikl. mekh. tekhn. fiz., 1984, no. 5, 151–154

[30] Chen Shaoting, “New concepts of elasticity theory and an application”, Acta Mech. Sinica, 16:3 (1984), 259–274

[31] Eringen A. C., Microcontinuum field theories. 1. Foundation and solids, Springer-Verlag, New York, 1999 | MR

[32] Mehrabadi M. M., Cowin S. C., “Eigentensors of linear anisotropic elastic materials”, Quart. J. Mech. Appl. Math., 43:1 (1990), 15–41 | DOI | MR | Zbl

[33] Mehrabadi M. M., Cowin S. C., “Eigentensors of linear anisotropic elastic materials. Corrigendum”, Quart. J. Mech. and Appl. Math., 44 (1991), 333 | DOI | MR

[34] Nikabadze M. U., “On some problems of tensor calculus, I”, J. Math. Sci., 161:5 (2009), 668–697 | DOI | MR | Zbl

[35] Nikabadze M. U., “On some problems of tensor calculus, II”, J. Math. Sci., 161:5 (2009), 698–733 | DOI | MR | Zbl

[36] Nikabadze M. U., “Eigenvalue problems of a tensor and a tensor-block matrix (TMB) of any even rank with some applications in mechanics”, Generalized Continua as Models for Classical and Advanced Materials, v. 42, Adv. Struc. Mat., eds. Altenbach H., Forest S., Springer, 2016, 279–317 | MR

[37] Nikabadze M. U., “Topics on tensor calculus with applications to mechanics”, J. Math. Sci., 225:1 (2017), 1–194 | DOI | MR | Zbl

[38] Nikabadze M. U., “Eigenvalue problem for tensors of even rank and its applications in mechanics”, J. Math. Sci., 221:2 (2017), 174–204 | DOI | MR | Zbl

[39] Sutcliffe S., “Spectral decomposition of the elasticity tensor”, J. Appl. Mech. ASME, 59:4 (1992), 762–773 | DOI | MR | Zbl

[40] Theocaris P. S., “The compliance fourth-rank tensor for the transtropic material and its spectral decomposition”, Proc. Natl. Acad. Athens., 61:1 (1989), 80–100 | MR

[41] Theocaris P. S., Philippidis T. P., “Elastic eigenstates of a medium with transverse isotropy”, Arch. Mech. Stosov., 41:5 (1989), 717–724 | MR | Zbl

[42] Theocaris P. S., Philippidis T. P., “Variational bounds on the eigenangle $\omega$ of transversely isotropic materials”, Acta Mech., 85:1-2 (1990), 13–26 | DOI

[43] Theocaris P. S., Philippidis T. P., “Spectral decomposition of compliance and stiffness fourth-rank tensors suitable for orthotropic materials”, Z. Angew. Math. Mech., 71:3 (1991), 161–171 | MR | Zbl

[44] Todhunter I., Pearson K., A history of the theory of elasticity and of the strength of materials from Galilei to Lord Kelvin. II. Saint-Venant to Lord Kelvin, Dover, New York, 1960 | MR | Zbl