On $3$-Homogeneous Hypergraphs Colorings in $3$ Colors
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 150 (2018), pp. 26-39

Voir la notice de l'article provenant de la source Math-Net.Ru

The value $m(n,r)$ in the Erdős–Hajnal problem is studied. Using various methods, we obtain the estimate $27 \leq m(3,3) \leq 35$.
Keywords: hypergraph, coloring, combinatorics.
@article{INTO_2018_150_a1,
     author = {I. A. Akolzin},
     title = {On $3${-Homogeneous} {Hypergraphs} {Colorings} in $3$ {Colors}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {26--39},
     publisher = {mathdoc},
     volume = {150},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_150_a1/}
}
TY  - JOUR
AU  - I. A. Akolzin
TI  - On $3$-Homogeneous Hypergraphs Colorings in $3$ Colors
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 26
EP  - 39
VL  - 150
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_150_a1/
LA  - ru
ID  - INTO_2018_150_a1
ER  - 
%0 Journal Article
%A I. A. Akolzin
%T On $3$-Homogeneous Hypergraphs Colorings in $3$ Colors
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 26-39
%V 150
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_150_a1/
%G ru
%F INTO_2018_150_a1
I. A. Akolzin. On $3$-Homogeneous Hypergraphs Colorings in $3$ Colors. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 150 (2018), pp. 26-39. http://geodesic.mathdoc.fr/item/INTO_2018_150_a1/