On $3$-Homogeneous Hypergraphs Colorings in $3$ Colors
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 150 (2018), pp. 26-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The value $m(n,r)$ in the Erdős–Hajnal problem is studied. Using various methods, we obtain the estimate $27 \leq m(3,3) \leq 35$.
Keywords: hypergraph, coloring, combinatorics.
@article{INTO_2018_150_a1,
     author = {I. A. Akolzin},
     title = {On $3${-Homogeneous} {Hypergraphs} {Colorings} in $3$ {Colors}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {26--39},
     publisher = {mathdoc},
     volume = {150},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_150_a1/}
}
TY  - JOUR
AU  - I. A. Akolzin
TI  - On $3$-Homogeneous Hypergraphs Colorings in $3$ Colors
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 26
EP  - 39
VL  - 150
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_150_a1/
LA  - ru
ID  - INTO_2018_150_a1
ER  - 
%0 Journal Article
%A I. A. Akolzin
%T On $3$-Homogeneous Hypergraphs Colorings in $3$ Colors
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 26-39
%V 150
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_150_a1/
%G ru
%F INTO_2018_150_a1
I. A. Akolzin. On $3$-Homogeneous Hypergraphs Colorings in $3$ Colors. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 150 (2018), pp. 26-39. http://geodesic.mathdoc.fr/item/INTO_2018_150_a1/

[1] Raigorodskii A. M., Shabanov D. A., “Zadacha Erdesha—Khainala o raskraskakh gipergrafov, ee obobscheniya i smezhnye problemy”, Usp. mat. nauk, 66:5 (2011), 109–182 | DOI | MR | Zbl

[2] Akolzin I. A., Shabanov D. A., “Colorings of hypergraphs with large number of colors”, Discr. Math., 339:12 (2016), 3020–3031 | DOI | MR | Zbl

[3] Boyer E. D., Kreher D. L., Radziszowski S. P., Sidorenko A., “On $(n,5,3)$-Turan systems”, Ars Combinatoria, 37 (1994), 13–31 | MR | Zbl

[4] Cherkashin D., Kozik J., “A note on random greedy coloring of uniform hypergraphs”, Random Struct. Algorithms, 47:3 (2015), 407–413 | DOI | MR | Zbl

[5] Erdős P., “On a combinatorial problem, I”, Nordisk Mat. Tidskrift, 11 (1963), 5–10 | MR | Zbl

[6] Erdős P., “On a combinatorial problem, II”, Acta Math. Acad. Sci., 15:3-4 (1964), 445–447 | DOI | MR | Zbl

[7] Erdős P., Hajnal A., “On a property of families of sets”, Acta Math. Acad. Sci., 12:1-2 (1961), 87–123 | MR | Zbl

[8] Goldberg M., Russell H., “Toward computing $m(4)$”, Ars Combinatoria, 39 (1995), 139–148 | MR | Zbl

[9] Kostochka A. V., “Color-critical graphs and hypergraphs with few edges: A survey”, More Sets, Graphs and Numbers, v. 15, Bolyai Soc. Math. Stud., eds. Győri E., Katona G. O H., Lovász L., Fleiner T., Springer, Berlin–Heidelberg, 2006, 175–198 | DOI | MR

[10] Östergård P. R. J., “On the minimum size of 4-uniform hypergraphs without property B”, Discr. Appl. Math., 163:2 (2014), 199–204 | DOI | MR | Zbl

[11] Radhakrishnan J., Srinivasan A., “Improved bounds and algorithms for hypergraph two-coloring”, Random Struct. Algorithms, 16:1 (2000), 4–32 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[12] Seymour P. D., “A note on a combinatorial problem of Erdős and Hajnal”, J. London Math. Soc., 8:2 (1974), 681–682 | DOI | MR | Zbl

[13] Sidorenko A., “What we know and what we do not know about Turan numbers”, Graphs and Combinatorics, 11 (1995), 179–199 | DOI | MR | Zbl

[14] Toft B., “On color critical hypergraphs”, Infinite and Finite Sets, 3 (1975), 1445–1457 | MR

[15] Turán P., “Research problems”, Magyar Tud. Akad. Mat. Kutato Internat. Közl., 6 (1961), 417–423 | MR