Краевые задачи для ультрапараболических и квазиультрапараболических уравнений с меняющимся направлением эволюции
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 56-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine the solvability of the boundary-value problems for the differential equation \begin{gather*} h(t)u_t+(-1)^mD^{2m+1}_au-\Delta u+c(x,t,a)u=f(x,t,a); \\ x\in\Omega\subset \mathbb{R}^n, \quad 0, \quad 0, \quad D^k_a=\frac{\partial^k}{\partial a^k}, \end{gather*} where the sign of the function $h(t)$ arbitrarily alternates in the interval $[0,T]$. The existence and uniqueness theorems of regular (i.e., possessing all generalized derivatives in the Sobolev sense) solutions are proved.
Mots-clés : ultraparabolic equation, evolution
Keywords: nonclassical differential equation of odd order, boundary-value problem, regular solution, existence, uniqueness.
@article{INTO_2018_149_a6,
     author = {A. I. Kozhanov},
     title = {{\CYRK}{\cyrr}{\cyra}{\cyre}{\cyrv}{\cyrery}{\cyre} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyri} {\cyrd}{\cyrl}{\cyrya} {\cyru}{\cyrl}{\cyrsftsn}{\cyrt}{\cyrr}{\cyra}{\cyrp}{\cyra}{\cyrr}{\cyra}{\cyrb}{\cyro}{\cyrl}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyrh} {\cyri} {\cyrk}{\cyrv}{\cyra}{\cyrz}{\cyri}{\cyru}{\cyrl}{\cyrsftsn}{\cyrt}{\cyrr}{\cyra}{\cyrp}{\cyra}{\cyrr}{\cyra}{\cyrb}{\cyro}{\cyrl}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyrh} {\cyru}{\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyrishrt} {\cyrs} {\cyrm}{\cyre}{\cyrn}{\cyrya}{\cyryu}{\cyrshch}{\cyri}{\cyrm}{\cyrs}{\cyrya} {\cyrn}{\cyra}{\cyrp}{\cyrr}{\cyra}{\cyrv}{\cyrl}{\cyre}{\cyrn}{\cyri}{\cyre}{\cyrm} {\cyrerev}{\cyrv}{\cyro}{\cyrl}{\cyryu}{\cyrc}{\cyri}{\cyri}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {56--63},
     publisher = {mathdoc},
     volume = {149},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_149_a6/}
}
TY  - JOUR
AU  - A. I. Kozhanov
TI  - Краевые задачи для ультрапараболических и квазиультрапараболических уравнений с меняющимся направлением эволюции
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 56
EP  - 63
VL  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_149_a6/
LA  - ru
ID  - INTO_2018_149_a6
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%T Краевые задачи для ультрапараболических и квазиультрапараболических уравнений с меняющимся направлением эволюции
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 56-63
%V 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_149_a6/
%G ru
%F INTO_2018_149_a6
A. I. Kozhanov. Краевые задачи для ультрапараболических и квазиультрапараболических уравнений с меняющимся направлением эволюции. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 56-63. http://geodesic.mathdoc.fr/item/INTO_2018_149_a6/

[1] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975

[2] Kozhanov A.I., Potapova S.V., “Zadacha sopryazheniya dlya differentsialnykh uravnenii nechetnogo poryadka s dvumya vremennymi peremennymi i s menyayuschimsya napravleniem evolyutsii”, Doklady RAN, 474:6 (2017), 661-664 | DOI | Zbl

[3] Ladyzhenskaya O.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[4] Oleinik O.A., Radkevich E.V., Uravneniya s neotritsatelnoi kharakteristicheskoi formoi, MGU, M., 2010

[5] Sin A.Z., Issledovanie nachalno-kraevykh zadach dlya nekotorykh modelnykh ultraparabolicheskikh uravnenii, TOGU, Khabarovsk, 2014

[6] Trenogin V.A., Funktsionalnyi analiz, Nauka, M., 1980

[7] Gevrey M., “Sur les equations aux derivees partielles du type parabolique”, J. Math. Appl., 9:6 (1913), 305-478

[8] Fichera G., On a unified theory of boundary value problems for elliptic-parabolic equations of second order. Boundary problems. Differential equations, Univ. of Wisconsin Press. Madison, Wisconsin, 1960 | MR