Inhomogeneous Fractional Evolutionary Equation in the Sectorial Case
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 103-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the unique solvability of the Cauchy problem for a linear inhomogeneous equation in a Banach space that is solved with respect to the Gerasimov–Caputo fractional derivative. We assume that the operator acting on the unknown function in the equation generates a set of resolving operators of the corresponding homogeneous equation, which is exponentially bounded and analytic in a sector containing the positive semiaxis, which is in the sector. The general form of solutions to the Cauchy problem is obtained. The general results are applied to the study of the unique solvability of a certain class of initial-boundary-value problems for partial differential equations solvable with respect to the Gerasimov–Caputo fractional derivative with respect to time, containing in the simplest case initial-boundary-value problems for fractional diffusion and diffusion-wave equations.
Keywords: Gerasimov–Caputo fractional derivative, evolutionary equation, analytic in a sector resolving family of operators, initial-boundary-value problem
Mots-clés : diffusion-wave equation.
@article{INTO_2018_149_a11,
     author = {V. E. Fedorov and E. A. Romanova},
     title = {Inhomogeneous {Fractional} {Evolutionary} {Equation} in the {Sectorial} {Case}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {103--112},
     publisher = {mathdoc},
     volume = {149},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_149_a11/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - E. A. Romanova
TI  - Inhomogeneous Fractional Evolutionary Equation in the Sectorial Case
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 103
EP  - 112
VL  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_149_a11/
LA  - ru
ID  - INTO_2018_149_a11
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A E. A. Romanova
%T Inhomogeneous Fractional Evolutionary Equation in the Sectorial Case
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 103-112
%V 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_149_a11/
%G ru
%F INTO_2018_149_a11
V. E. Fedorov; E. A. Romanova. Inhomogeneous Fractional Evolutionary Equation in the Sectorial Case. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 103-112. http://geodesic.mathdoc.fr/item/INTO_2018_149_a11/

[1] Vasilev V. V., Krein S. G., Piskarev S. I., “Polugruppy operatorov, kosinus operator-funktsii i lineinye differentsialnye uravneniya”, Itogi nauki i tekhn. Ser. Mat. analiz, 28 (1990), 87–202 | MR | Zbl

[2] Gerasimov A. N., “Obobschenie lineinykh zakonov deformatsii i ikh prilozhenie k zadacham vnutrennego treniya”, Prikl. mat. mekh., 12 (1948), 529–539

[3] Iosida K., Funktsionalnyi analiz, Izd-vo LKI, M., 2007

[4] Klement F., Kheimans Kh., Angenent S., van Duin K., de Pakhter B., Odnoparametricheskie polugruppy, Mir, M., 1992 | MR

[5] Kostin V. A., “K teoreme Solomyaka—Iosidy dlya analiticheskikh polugrupp”, Algebra i analiz, 11:1 (1999), 118–140 | Zbl

[6] Solomyak M. Z., “Primenenie teorii polugrupp k issledovaniyu differentsialnykh uravnenii v prostranstvakh Banakha”, Dokl. AN SSSR, 122:5 (1958), 766–769 | Zbl

[7] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980

[8] Fedorov V. E., Gordievskikh D. M., Plekhanova M. V., “Uravneniya v banakhovykh prostranstvakh s vyrozhdennym operatorom pod znakom drobnoi proizvodnoi”, Differ. uravn., 51:10 (2015), 1367–1375 | DOI | Zbl

[9] Fedorov V. E., Romanova E. A., Debush A., “Analiticheskie v sektore razreshayuschie semeistva operatorov vyrozhdennykh evolyutsionnykh uravnenii drobnogo poryadka”, Sib. zh. chist. prikl. mat., 16:2 (2016), 93–107 | Zbl

[10] Bajlekova E. G., Fractional Evolution Equations in Banach Spaces, Ph.D. thesis, Eindhoven University of Technology, Eindhoven; University Press Facilities, 2001 | MR | Zbl

[11] Caputo M., “Lineal model of dissipation whose $Q$ is almost frequancy independent, II”, Geophys. J. Astron. Soc., 13 (1967), 529–539 | DOI

[12] Da Prato G., Iannelli M., “Linear abstract integrodifferential equations of hyperbolic type in Hilbert spaces”, Rend. Sem. Mat. Univ. Padova., 62 (1980), 191–206 | MR | Zbl

[13] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier, Amsterdam–Boston–Heidelberg, 2006 | MR | Zbl

[14] Podlubny I., Fractional differential equations, Academic Press, San Diego–Boston, 1999 | MR | Zbl

[15] Prüss J., Evolutionary integral equations and applications, Springer-Verlag, Basel, 1993 | MR