Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_149_a10, author = {A. P. Soldatov and O. V. Chernova}, title = {Riemann--Hilbert {Problem} for {First-Order} {Elliptic} {Systems} with {Constant} {Leading} {Coefficients} on the {Plane}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {95--102}, publisher = {mathdoc}, volume = {149}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_149_a10/} }
TY - JOUR AU - A. P. Soldatov AU - O. V. Chernova TI - Riemann--Hilbert Problem for First-Order Elliptic Systems with Constant Leading Coefficients on the Plane JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 95 EP - 102 VL - 149 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_149_a10/ LA - ru ID - INTO_2018_149_a10 ER -
%0 Journal Article %A A. P. Soldatov %A O. V. Chernova %T Riemann--Hilbert Problem for First-Order Elliptic Systems with Constant Leading Coefficients on the Plane %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 95-102 %V 149 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_149_a10/ %G ru %F INTO_2018_149_a10
A. P. Soldatov; O. V. Chernova. Riemann--Hilbert Problem for First-Order Elliptic Systems with Constant Leading Coefficients on the Plane. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 95-102. http://geodesic.mathdoc.fr/item/INTO_2018_149_a10/
[1] Abapolova E. A., Soldatov A. P., “K teorii singulyarnykh integralnykh uravnenii na gladkom konture”, Nauch. vedomosti BelGU, 18:5 (76) (2010), 6–20
[2] Boyarskii B. V., “Teoriya obobschennogo analiticheskogo vektora”, Ann. Polon. Math., 17:3 (1965), 281–320 | DOI
[3] Vaschenko O. V., Soldatov A. P., “Integralnoe predstavlenie reshenii obobschennoi sistemy Beltrami”, Nauch. vedomosti BelGU. Ser. «Informatika i prikladnaya matematika», 6:1 (21) (2006), 3–6
[4] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR
[5] Pale R., Seminar po teoreme Ati—Zingera ob indekse, Mir, M., 1970
[6] Soldatov A. P., “Metod teopii funktsii v kpaevykh zadachakh na ploskosti. I. Gladkii sluchai”, Izv. AH SSSR. Sep. mat., 55:5 (1991), 1070–1100
[7] Soldatov A. P., “Zadacha Shvartsa dlya funktsii, analiticheskikh po Duglisu”, Sovr. mat. prilozh., 67 (2010), 99–102
[8] Soldatov A. P., “Singulyarnye integralnye operatory i ellipticheskie kraevye zadachi. I”, Sovr. mat. Fundam. napr., 63:1 (2017), 1–189
[9] Soldatov A. P., Chernova O. V., “Zadacha Rimana—Gilberta dlya ellipticheskoi sistemy pervogo poryadka v klassakh Geldera”, Nauch. vedomosti BelGU, 17/2:13 (68) (2009), 115–121
[10] Gilbert R. P., Buchanan J. L., First-order elliptic systems: A function theoretic approach, Academic Press, New York, 1983 | MR | Zbl
[11] Soldatov A. P., “Hyperanalytic functions and their applications”, J. Math. Sci., 132:6 (2006), 827–882 | DOI | MR