Riemann--Hilbert Problem for First-Order Elliptic Systems with Constant Leading Coefficients on the Plane
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 95-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a finite domain $D$ of the complex plane bounded by a smooth contour $\Gamma$, we consider the Riemann–Hilbert boundary-value problem \begin{equation*} \operatorname{Re} CU^+=f \end{equation*} for the first-order elliptic system \begin{equation*} \frac{\partial U}{\partial y}-A\frac{\partial U}{\partial x}+a(z)U(z)+b(z)\overline{U(z)}=F(z) \end{equation*} with constant leading coefficients. Here $+$ denotes the boundary value of the function $U$ on $\Gamma$, the constant matrices $A_1, A_2 \in\mathbb{C}^{l\times l}$ and $(l\times l)$-matrix coefficients $a$ and $b$ belong to the Hölder class $C^{\mu}$, $0\mu1$, and $(l\times l)$-matrix function $C$ belongs to the class $C^\mu(\Gamma)$. We prove that in the class $U\in C^\mu(\overline{D})\cap C^1(D)$, this problem is a Fredholm problem and its index is given by the formula \begin{equation*} \varkappa=-\sum_{j=1}^m\frac{1}{\pi} \big[\arg\det G\big]_{\Gamma_j}+(2-m)l. \end{equation*}
Keywords: elliptic systems, Riemann–Hilbert problem, Fredholm operator.
Mots-clés : index formula
@article{INTO_2018_149_a10,
     author = {A. P. Soldatov and O. V. Chernova},
     title = {Riemann--Hilbert {Problem} for {First-Order} {Elliptic} {Systems} with {Constant} {Leading} {Coefficients} on the {Plane}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {95--102},
     publisher = {mathdoc},
     volume = {149},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_149_a10/}
}
TY  - JOUR
AU  - A. P. Soldatov
AU  - O. V. Chernova
TI  - Riemann--Hilbert Problem for First-Order Elliptic Systems with Constant Leading Coefficients on the Plane
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 95
EP  - 102
VL  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_149_a10/
LA  - ru
ID  - INTO_2018_149_a10
ER  - 
%0 Journal Article
%A A. P. Soldatov
%A O. V. Chernova
%T Riemann--Hilbert Problem for First-Order Elliptic Systems with Constant Leading Coefficients on the Plane
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 95-102
%V 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_149_a10/
%G ru
%F INTO_2018_149_a10
A. P. Soldatov; O. V. Chernova. Riemann--Hilbert Problem for First-Order Elliptic Systems with Constant Leading Coefficients on the Plane. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 95-102. http://geodesic.mathdoc.fr/item/INTO_2018_149_a10/

[1] Abapolova E. A., Soldatov A. P., “K teorii singulyarnykh integralnykh uravnenii na gladkom konture”, Nauch. vedomosti BelGU, 18:5 (76) (2010), 6–20

[2] Boyarskii B. V., “Teoriya obobschennogo analiticheskogo vektora”, Ann. Polon. Math., 17:3 (1965), 281–320 | DOI

[3] Vaschenko O. V., Soldatov A. P., “Integralnoe predstavlenie reshenii obobschennoi sistemy Beltrami”, Nauch. vedomosti BelGU. Ser. «Informatika i prikladnaya matematika», 6:1 (21) (2006), 3–6

[4] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[5] Pale R., Seminar po teoreme Ati—Zingera ob indekse, Mir, M., 1970

[6] Soldatov A. P., “Metod teopii funktsii v kpaevykh zadachakh na ploskosti. I. Gladkii sluchai”, Izv. AH SSSR. Sep. mat., 55:5 (1991), 1070–1100

[7] Soldatov A. P., “Zadacha Shvartsa dlya funktsii, analiticheskikh po Duglisu”, Sovr. mat. prilozh., 67 (2010), 99–102

[8] Soldatov A. P., “Singulyarnye integralnye operatory i ellipticheskie kraevye zadachi. I”, Sovr. mat. Fundam. napr., 63:1 (2017), 1–189

[9] Soldatov A. P., Chernova O. V., “Zadacha Rimana—Gilberta dlya ellipticheskoi sistemy pervogo poryadka v klassakh Geldera”, Nauch. vedomosti BelGU, 17/2:13 (68) (2009), 115–121

[10] Gilbert R. P., Buchanan J. L., First-order elliptic systems: A function theoretic approach, Academic Press, New York, 1983 | MR | Zbl

[11] Soldatov A. P., “Hyperanalytic functions and their applications”, J. Math. Sci., 132:6 (2006), 827–882 | DOI | MR