Riemann--Hilbert Problem for First-Order Elliptic Systems with Constant Leading Coefficients on the Plane
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 95-102
Voir la notice de l'article provenant de la source Math-Net.Ru
In a finite domain $D$ of the complex plane bounded by a smooth contour $\Gamma$, we consider the Riemann–Hilbert boundary-value problem
\begin{equation*}
\operatorname{Re} CU^+=f
\end{equation*}
for the first-order elliptic system
\begin{equation*}
\frac{\partial U}{\partial y}-A\frac{\partial U}{\partial x}+a(z)U(z)+b(z)\overline{U(z)}=F(z)
\end{equation*}
with constant leading coefficients. Here $+$ denotes the boundary value of the function $U$ on $\Gamma$, the constant matrices $A_1, A_2 \in\mathbb{C}^{l\times l}$ and $(l\times l)$-matrix coefficients $a$ and $b$ belong to the Hölder class $C^{\mu}$, $0\mu1$, and $(l\times l)$-matrix function $C$ belongs to the class $C^\mu(\Gamma)$. We prove that in the class $U\in C^\mu(\overline{D})\cap C^1(D)$, this problem is a Fredholm problem and its index is given by the formula
\begin{equation*}
\varkappa=-\sum_{j=1}^m\frac{1}{\pi} \big[\arg\det G\big]_{\Gamma_j}+(2-m)l.
\end{equation*}
Keywords:
elliptic systems, Riemann–Hilbert problem, Fredholm operator.
Mots-clés : index formula
Mots-clés : index formula
@article{INTO_2018_149_a10,
author = {A. P. Soldatov and O. V. Chernova},
title = {Riemann--Hilbert {Problem} for {First-Order} {Elliptic} {Systems} with {Constant} {Leading} {Coefficients} on the {Plane}},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {95--102},
publisher = {mathdoc},
volume = {149},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2018_149_a10/}
}
TY - JOUR AU - A. P. Soldatov AU - O. V. Chernova TI - Riemann--Hilbert Problem for First-Order Elliptic Systems with Constant Leading Coefficients on the Plane JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 95 EP - 102 VL - 149 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_149_a10/ LA - ru ID - INTO_2018_149_a10 ER -
%0 Journal Article %A A. P. Soldatov %A O. V. Chernova %T Riemann--Hilbert Problem for First-Order Elliptic Systems with Constant Leading Coefficients on the Plane %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 95-102 %V 149 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_149_a10/ %G ru %F INTO_2018_149_a10
A. P. Soldatov; O. V. Chernova. Riemann--Hilbert Problem for First-Order Elliptic Systems with Constant Leading Coefficients on the Plane. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 95-102. http://geodesic.mathdoc.fr/item/INTO_2018_149_a10/