Positivity Conditions for Operators with Difference Kernels in Reflexive Spaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 3-13
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Using methods of the theory of discrete and integral Fourier transforms, we obtain necessary and sufficient conditions of the positivity of linear discrete, integral, and integro-differential operators with difference kernels in the spaces ${\ell}_p$ and $L_p$ for $1

and present examples illustrating the results obtained.

Keywords: positive operator, convolution operator, generalized operator of potential type, singular operator, integro-differential operator.
@article{INTO_2018_149_a0,
     author = {S. N. Askhabov},
     title = {Positivity {Conditions} for {Operators} with {Difference} {Kernels} in {Reflexive} {Spaces}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--13},
     year = {2018},
     volume = {149},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_149_a0/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Positivity Conditions for Operators with Difference Kernels in Reflexive Spaces
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 3
EP  - 13
VL  - 149
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_149_a0/
LA  - ru
ID  - INTO_2018_149_a0
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Positivity Conditions for Operators with Difference Kernels in Reflexive Spaces
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 3-13
%V 149
%U http://geodesic.mathdoc.fr/item/INTO_2018_149_a0/
%G ru
%F INTO_2018_149_a0
S. N. Askhabov. Positivity Conditions for Operators with Difference Kernels in Reflexive Spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2018_149_a0/

[1] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009 | MR

[2] Askhabov S. N., Nelineinye singulyarnye integralnye uravneniya v prostranstvakh Lebega, Chechen. gos. un-t, Groznyi, 2013

[3] Askhabov S. N., “Nelineinye uravneniya tipa svertki v prostranstvakh Lebega”, Mat. zametki, 97:5 (2015), 643–654 | DOI | MR | Zbl

[4] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961

[5] Guseinov A. I., Mukhtarov Kh. Sh., Vvedenie v teoriyu nelineinykh singulyarnykh integralnykh uravnenii, Nauka, M., 1980 | MR

[6] Kogan Kh. M., “Ob odnom singulyarnom integrodifferentsialnom uravnenii”, Usp. mat. nauk, 20:3 (123) (1965), 243–244

[7] Kogan Kh. M., “Ob odnom singulyarnom integrodifferentsialnom uravnenii”, Differ. uravn., 3:2 (1967), 278–293 | MR | Zbl

[8] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[9] Khardi G. Kh., Rogozinskii V. V., Ryady Fure, Fizmatgiz, M., 1959

[10] Khvedelidze B. V., “Lineinye razryvnye granichnye zadachi teorii funktsii, singulyarnye integralnye uravneniya i nekotorye ikh prilozheniya”, Tr. Tbilis. mat. in-ta AN Gruz. SSR, 23 (1956), 3–158

[11] Tsegelnik V. V., “Gamiltoniany, assotsiirovannye s tretim i pyatym uravneniyami Penleve”, Teor. mat. fiz., 162:1 (2010), 69–74 | DOI | MR | Zbl

[12] Edvards R., Ryady Fure v sovremennom izlozhenii, v. 1, Mir, M., 1985

[13] Fitt A. D., “When Tuck's double integral which should (?) vanish does”, Austr. Math. Soc. Gazette, 24:1 (1997), 22–25 | MR | Zbl

[14] Gripenberg G., Londen S.-O., Staffans O., Volterra integral and functional equations, Cambridge Univ. Press, Cambridge–New York, 1990 | MR | Zbl

[15] Junghanns P., Wolfersdorf L. V., “On the monotonicity of some singular integral operators”, Math. Meth. Appl. Sci., 35:8 (2012), 1275–1288 | DOI | MR

[16] Love E. R., “Tuck's double integral which should (?) vanish but doesn't”, Austr. Math. Soc. Gazette, 23:1 (1996), 912

[17] McLean B., “A double integral that usually vanishes”, Austr. Math. Soc. Gazette, 22:3 (1995), 114–115

[18] Mehta M. L., Random matrices, Academic Press, Boston, 1991 | MR | Zbl

[19] “Wiener Prize”, Notices of the AMS, 54:4 (2007), 525–526 | MR | Zbl

[20] Porter D., Stirling D., Integral equations. A practical treatment, from spectral theory to applications, Cambridge Univ. Press, 1990 | MR | Zbl

[21] Tracy C. A., Widom H., “Fredholm determinants, differential equations and matrix models”, Commun. Math. Phys., 163:2 (1994), 33–72 | DOI | MR | Zbl

[22] Schleiff M., “Untersuchungen einer linearen singularen Integrodifferentialgleichung der Tragflugeltheorie”, Wiss. Z. Univ. Halle. Math.-nat. Reihe, 17 (1968), 981–1000 | MR | Zbl

[23] Tuck E. O., “A double integral that should (?) vanish but doesn't”, Austr. Math. Soc. Gazette, 22:2 (1995), 58