Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_149_a0, author = {S. N. Askhabov}, title = {Positivity {Conditions} for {Operators} with {Difference} {Kernels} in {Reflexive} {Spaces}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--13}, publisher = {mathdoc}, volume = {149}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_149_a0/} }
TY - JOUR AU - S. N. Askhabov TI - Positivity Conditions for Operators with Difference Kernels in Reflexive Spaces JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 3 EP - 13 VL - 149 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_149_a0/ LA - ru ID - INTO_2018_149_a0 ER -
%0 Journal Article %A S. N. Askhabov %T Positivity Conditions for Operators with Difference Kernels in Reflexive Spaces %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 3-13 %V 149 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_149_a0/ %G ru %F INTO_2018_149_a0
S. N. Askhabov. Positivity Conditions for Operators with Difference Kernels in Reflexive Spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2018_149_a0/
[1] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009 | MR
[2] Askhabov S. N., Nelineinye singulyarnye integralnye uravneniya v prostranstvakh Lebega, Chechen. gos. un-t, Groznyi, 2013
[3] Askhabov S. N., “Nelineinye uravneniya tipa svertki v prostranstvakh Lebega”, Mat. zametki, 97:5 (2015), 643–654 | DOI | MR | Zbl
[4] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961
[5] Guseinov A. I., Mukhtarov Kh. Sh., Vvedenie v teoriyu nelineinykh singulyarnykh integralnykh uravnenii, Nauka, M., 1980 | MR
[6] Kogan Kh. M., “Ob odnom singulyarnom integrodifferentsialnom uravnenii”, Usp. mat. nauk, 20:3 (123) (1965), 243–244
[7] Kogan Kh. M., “Ob odnom singulyarnom integrodifferentsialnom uravnenii”, Differ. uravn., 3:2 (1967), 278–293 | MR | Zbl
[8] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003
[9] Khardi G. Kh., Rogozinskii V. V., Ryady Fure, Fizmatgiz, M., 1959
[10] Khvedelidze B. V., “Lineinye razryvnye granichnye zadachi teorii funktsii, singulyarnye integralnye uravneniya i nekotorye ikh prilozheniya”, Tr. Tbilis. mat. in-ta AN Gruz. SSR, 23 (1956), 3–158
[11] Tsegelnik V. V., “Gamiltoniany, assotsiirovannye s tretim i pyatym uravneniyami Penleve”, Teor. mat. fiz., 162:1 (2010), 69–74 | DOI | MR | Zbl
[12] Edvards R., Ryady Fure v sovremennom izlozhenii, v. 1, Mir, M., 1985
[13] Fitt A. D., “When Tuck's double integral which should (?) vanish does”, Austr. Math. Soc. Gazette, 24:1 (1997), 22–25 | MR | Zbl
[14] Gripenberg G., Londen S.-O., Staffans O., Volterra integral and functional equations, Cambridge Univ. Press, Cambridge–New York, 1990 | MR | Zbl
[15] Junghanns P., Wolfersdorf L. V., “On the monotonicity of some singular integral operators”, Math. Meth. Appl. Sci., 35:8 (2012), 1275–1288 | DOI | MR
[16] Love E. R., “Tuck's double integral which should (?) vanish but doesn't”, Austr. Math. Soc. Gazette, 23:1 (1996), 912
[17] McLean B., “A double integral that usually vanishes”, Austr. Math. Soc. Gazette, 22:3 (1995), 114–115
[18] Mehta M. L., Random matrices, Academic Press, Boston, 1991 | MR | Zbl
[19] “Wiener Prize”, Notices of the AMS, 54:4 (2007), 525–526 | MR | Zbl
[20] Porter D., Stirling D., Integral equations. A practical treatment, from spectral theory to applications, Cambridge Univ. Press, 1990 | MR | Zbl
[21] Tracy C. A., Widom H., “Fredholm determinants, differential equations and matrix models”, Commun. Math. Phys., 163:2 (1994), 33–72 | DOI | MR | Zbl
[22] Schleiff M., “Untersuchungen einer linearen singularen Integrodifferentialgleichung der Tragflugeltheorie”, Wiss. Z. Univ. Halle. Math.-nat. Reihe, 17 (1968), 981–1000 | MR | Zbl
[23] Tuck E. O., “A double integral that should (?) vanish but doesn't”, Austr. Math. Soc. Gazette, 22:2 (1995), 58