Positivity Conditions for Operators with Difference Kernels in Reflexive Spaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using methods of the theory of discrete and integral Fourier transforms, we obtain necessary and sufficient conditions of the positivity of linear discrete, integral, and integro-differential operators with difference kernels in the spaces ${\ell}_p$ and $L_p$ for $1$ and present examples illustrating the results obtained.
Keywords: positive operator, convolution operator, generalized operator of potential type, singular operator, integro-differential operator.
@article{INTO_2018_149_a0,
     author = {S. N. Askhabov},
     title = {Positivity {Conditions} for {Operators} with {Difference} {Kernels} in {Reflexive} {Spaces}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {149},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_149_a0/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Positivity Conditions for Operators with Difference Kernels in Reflexive Spaces
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 3
EP  - 13
VL  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_149_a0/
LA  - ru
ID  - INTO_2018_149_a0
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Positivity Conditions for Operators with Difference Kernels in Reflexive Spaces
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 3-13
%V 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_149_a0/
%G ru
%F INTO_2018_149_a0
S. N. Askhabov. Positivity Conditions for Operators with Difference Kernels in Reflexive Spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 149 (2018), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2018_149_a0/

[1] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009 | MR

[2] Askhabov S. N., Nelineinye singulyarnye integralnye uravneniya v prostranstvakh Lebega, Chechen. gos. un-t, Groznyi, 2013

[3] Askhabov S. N., “Nelineinye uravneniya tipa svertki v prostranstvakh Lebega”, Mat. zametki, 97:5 (2015), 643–654 | DOI | MR | Zbl

[4] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961

[5] Guseinov A. I., Mukhtarov Kh. Sh., Vvedenie v teoriyu nelineinykh singulyarnykh integralnykh uravnenii, Nauka, M., 1980 | MR

[6] Kogan Kh. M., “Ob odnom singulyarnom integrodifferentsialnom uravnenii”, Usp. mat. nauk, 20:3 (123) (1965), 243–244

[7] Kogan Kh. M., “Ob odnom singulyarnom integrodifferentsialnom uravnenii”, Differ. uravn., 3:2 (1967), 278–293 | MR | Zbl

[8] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[9] Khardi G. Kh., Rogozinskii V. V., Ryady Fure, Fizmatgiz, M., 1959

[10] Khvedelidze B. V., “Lineinye razryvnye granichnye zadachi teorii funktsii, singulyarnye integralnye uravneniya i nekotorye ikh prilozheniya”, Tr. Tbilis. mat. in-ta AN Gruz. SSR, 23 (1956), 3–158

[11] Tsegelnik V. V., “Gamiltoniany, assotsiirovannye s tretim i pyatym uravneniyami Penleve”, Teor. mat. fiz., 162:1 (2010), 69–74 | DOI | MR | Zbl

[12] Edvards R., Ryady Fure v sovremennom izlozhenii, v. 1, Mir, M., 1985

[13] Fitt A. D., “When Tuck's double integral which should (?) vanish does”, Austr. Math. Soc. Gazette, 24:1 (1997), 22–25 | MR | Zbl

[14] Gripenberg G., Londen S.-O., Staffans O., Volterra integral and functional equations, Cambridge Univ. Press, Cambridge–New York, 1990 | MR | Zbl

[15] Junghanns P., Wolfersdorf L. V., “On the monotonicity of some singular integral operators”, Math. Meth. Appl. Sci., 35:8 (2012), 1275–1288 | DOI | MR

[16] Love E. R., “Tuck's double integral which should (?) vanish but doesn't”, Austr. Math. Soc. Gazette, 23:1 (1996), 912

[17] McLean B., “A double integral that usually vanishes”, Austr. Math. Soc. Gazette, 22:3 (1995), 114–115

[18] Mehta M. L., Random matrices, Academic Press, Boston, 1991 | MR | Zbl

[19] “Wiener Prize”, Notices of the AMS, 54:4 (2007), 525–526 | MR | Zbl

[20] Porter D., Stirling D., Integral equations. A practical treatment, from spectral theory to applications, Cambridge Univ. Press, 1990 | MR | Zbl

[21] Tracy C. A., Widom H., “Fredholm determinants, differential equations and matrix models”, Commun. Math. Phys., 163:2 (1994), 33–72 | DOI | MR | Zbl

[22] Schleiff M., “Untersuchungen einer linearen singularen Integrodifferentialgleichung der Tragflugeltheorie”, Wiss. Z. Univ. Halle. Math.-nat. Reihe, 17 (1968), 981–1000 | MR | Zbl

[23] Tuck E. O., “A double integral that should (?) vanish but doesn't”, Austr. Math. Soc. Gazette, 22:2 (1995), 58