Study of a Three-Factor Dynamic System of the Region Economy with Considering of Final Consumption and Limited Resources
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 75-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

A three-factor modification of the R. Solow model is constructed, taking into account final consumption and limited resources. The dynamics of a population is determined by the Ferhulst equation, the final consumption depends on the population. According to the Russian Federal State Statistics Service, the model parameters for the Ryazan Region were identified. The analytical and numerical study of the behavior of solutions of the resulting dynamical system is conducted.
Keywords: dynamic system, economic and mathematical model, modification of the Solow model, behavior of solutions.
@article{INTO_2018_148_a9,
     author = {E. Yu. Liskina},
     title = {Study of a {Three-Factor} {Dynamic} {System} of the {Region} {Economy} with {Considering} of {Final} {Consumption} and {Limited} {Resources}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {148},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a9/}
}
TY  - JOUR
AU  - E. Yu. Liskina
TI  - Study of a Three-Factor Dynamic System of the Region Economy with Considering of Final Consumption and Limited Resources
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 75
EP  - 82
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_148_a9/
LA  - ru
ID  - INTO_2018_148_a9
ER  - 
%0 Journal Article
%A E. Yu. Liskina
%T Study of a Three-Factor Dynamic System of the Region Economy with Considering of Final Consumption and Limited Resources
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 75-82
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_148_a9/
%G ru
%F INTO_2018_148_a9
E. Yu. Liskina. Study of a Three-Factor Dynamic System of the Region Economy with Considering of Final Consumption and Limited Resources. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 75-82. http://geodesic.mathdoc.fr/item/INTO_2018_148_a9/

[1] Abramov V. V., “Kachestvennoe issledovanie odnosektornoi ekonomiki”, Izv. RAEN. Differ. uravn., 12 (2007), 11–15

[2] Volkova A. V., “O primenenii modeli Solou k analizu prakticheskikh problem ekonomicheskoi politiki v issledovaniyakh zarubezhnykh i rossiiskikh avtorov”, Analiz, modelirovanie i prognozirovanie ekonomicheskikh protsessov, Mat. II Mezhdunar. nauch.-prakt. internet-konf. (Volgograd. gos. un-t, Voronezh. gos. un-t, 15.12.2010–15.02.2011), TsNTI, Voronezh, 2010, 17–27 http://new.volsu.ru/forum/forum36/topic136/

[3] Kolemaev V. A., Matematicheskaya ekonomika, YuNITI-DANA, M., 2005

[4] Lazareva I. A., Liskina E. Yu., “Postroenie i identifikatsiya odnosektornoi modeli ekonomiki regiona, uchityvayuschei konechnoe potreblenie i konkurentsiyu za ogranichennye resursy”, Vestn. RAEN, 16:3 (2016), 36–40

[5] Maevskii V. I., Malkov S. Yu., Rubinshtein A. A., “Osobennosti i problemy modelirovaniya pereklyuchayuschegosya vosproizvodstva”, Ekonom. mat. metody, 51:10 (2015), 26–44

[6] Prasolov A. V., Matematicheskie metody ekonomicheskoi dinamiki, Lan, SPb., 2008

[7] Romanovskii M. Yu., Romanovskii Yu. M., Vvedenie v ekonofiziku. Statisticheskie i dinamicheskie modeli, M., 2007

[8] Andreev V. V., “On the validity of use of physical equations and principles in the socio-economic field and on the predictability of socio-economic system dynamics”, Nonlinear Analysis: Modelling and Control, 20:1 (2015), 82–98 | DOI | MR | Zbl