Bifurcations of Spatially Inhomogeneous Solutions in Two Versions of the Nonlocal Erosion Equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 66-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

A periodic boundary-value problem for two versions of the nonlocal erosion equation is considered. This equation belongs to the class of partial differential equations with deviating spatial arguments. The issue of bifurcations of spatially inhomogeneous solutions is studied for the periodic boundary-value problem. In order to study the problem, we use the method of integral manifolds and normal forms.
Keywords: partial differential equations with deviating spatial argument, periodic boundary value problem, stability, asymptotic formulas.
Mots-clés : bifurcations
@article{INTO_2018_148_a8,
     author = {A. M. Kovaleva and D. A. Kulikov},
     title = {Bifurcations of {Spatially} {Inhomogeneous} {Solutions} in {Two} {Versions} of the {Nonlocal} {Erosion} {Equation}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {66--74},
     publisher = {mathdoc},
     volume = {148},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a8/}
}
TY  - JOUR
AU  - A. M. Kovaleva
AU  - D. A. Kulikov
TI  - Bifurcations of Spatially Inhomogeneous Solutions in Two Versions of the Nonlocal Erosion Equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 66
EP  - 74
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_148_a8/
LA  - ru
ID  - INTO_2018_148_a8
ER  - 
%0 Journal Article
%A A. M. Kovaleva
%A D. A. Kulikov
%T Bifurcations of Spatially Inhomogeneous Solutions in Two Versions of the Nonlocal Erosion Equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 66-74
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_148_a8/
%G ru
%F INTO_2018_148_a8
A. M. Kovaleva; D. A. Kulikov. Bifurcations of Spatially Inhomogeneous Solutions in Two Versions of the Nonlocal Erosion Equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 66-74. http://geodesic.mathdoc.fr/item/INTO_2018_148_a8/

[5] Kovaleva A. M., Kulikov A. N., Kulikov D. A., “Ustoichivost i bifurkatsii volnoobraznykh reshenii dlya odnogo funktsionalno-differentsialnogo uravneniya”, Izv. in-ta mat. infor. Udmurt. gos. un-ta, 2:46 (2015), 60–68 | Zbl

[6] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1977

[7] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issl. po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1976, 114–129

[8] Kulikov A. N., Inertsionnye mnogoobraziya nelineinykh avtokolebanii differentsialnykh uravnenii v gilbertovom prostranstve, In-t prikl. mat. im. M. V. Keldysha AN SSSR, 1991

[9] Kulikov A. N., Kulikov D. A., “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. mat. mat. fiz., 52:5 (2012), 930–945 | MR | Zbl

[10] Kulikov A. N., Kulikov D. A., “Nelokalnaya model formirovaniya relefa pod vozdeistviem potoka ionov. Neodnorodnye nanostruktury”, Mat. modelirovanie, 28:3 (2016), 33–50 | MR | Zbl

[11] Kulikov D. A., “Mekhanizm formirovaniya volnovykh dissipativnykh struktur v odnoi iz zadach nanotekhnologii”, Vestn. RAEN. Differ. uravn., 13:4 (2013), 23–31

[12] Rudyi A. S., Bachurin V. I., “Prostranstvenno nelokalnaya model erozii poverkhnosti ionnoi bombardirovkoi”, Izv. RAN. Ser. fiz., 72:5 (2008), 586–591

[13] Rudyi A. S., Kulikov A. N., Kulikov D. A., Metlitskaya A. V., “Vysokomodovye volnovye relefy v ramkakh prostranstvenno nelokalnoi modeli erozii”, Mikroelektronika, 43:2 (2014), 109–118

[14] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. mat. o-va, 10 (1967), 297–350

[15] Bradley R. M., Harper J. M. E., “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Technol. A., 6:4 (1988), 2390–2395 | DOI

[16] Kulikov D. A., “Spatially ingomogeneous dissipative structures in a periodic boundary-value problem for a nonlocal erosion equation”, J. Math. Sci., 205:6 (2015), 791–805 | DOI | MR | Zbl