Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_148_a8, author = {A. M. Kovaleva and D. A. Kulikov}, title = {Bifurcations of {Spatially} {Inhomogeneous} {Solutions} in {Two} {Versions} of the {Nonlocal} {Erosion} {Equation}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {66--74}, publisher = {mathdoc}, volume = {148}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a8/} }
TY - JOUR AU - A. M. Kovaleva AU - D. A. Kulikov TI - Bifurcations of Spatially Inhomogeneous Solutions in Two Versions of the Nonlocal Erosion Equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 66 EP - 74 VL - 148 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_148_a8/ LA - ru ID - INTO_2018_148_a8 ER -
%0 Journal Article %A A. M. Kovaleva %A D. A. Kulikov %T Bifurcations of Spatially Inhomogeneous Solutions in Two Versions of the Nonlocal Erosion Equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 66-74 %V 148 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_148_a8/ %G ru %F INTO_2018_148_a8
A. M. Kovaleva; D. A. Kulikov. Bifurcations of Spatially Inhomogeneous Solutions in Two Versions of the Nonlocal Erosion Equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 66-74. http://geodesic.mathdoc.fr/item/INTO_2018_148_a8/
[5] Kovaleva A. M., Kulikov A. N., Kulikov D. A., “Ustoichivost i bifurkatsii volnoobraznykh reshenii dlya odnogo funktsionalno-differentsialnogo uravneniya”, Izv. in-ta mat. infor. Udmurt. gos. un-ta, 2:46 (2015), 60–68 | Zbl
[6] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1977
[7] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issl. po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1976, 114–129
[8] Kulikov A. N., Inertsionnye mnogoobraziya nelineinykh avtokolebanii differentsialnykh uravnenii v gilbertovom prostranstve, In-t prikl. mat. im. M. V. Keldysha AN SSSR, 1991
[9] Kulikov A. N., Kulikov D. A., “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. mat. mat. fiz., 52:5 (2012), 930–945 | MR | Zbl
[10] Kulikov A. N., Kulikov D. A., “Nelokalnaya model formirovaniya relefa pod vozdeistviem potoka ionov. Neodnorodnye nanostruktury”, Mat. modelirovanie, 28:3 (2016), 33–50 | MR | Zbl
[11] Kulikov D. A., “Mekhanizm formirovaniya volnovykh dissipativnykh struktur v odnoi iz zadach nanotekhnologii”, Vestn. RAEN. Differ. uravn., 13:4 (2013), 23–31
[12] Rudyi A. S., Bachurin V. I., “Prostranstvenno nelokalnaya model erozii poverkhnosti ionnoi bombardirovkoi”, Izv. RAN. Ser. fiz., 72:5 (2008), 586–591
[13] Rudyi A. S., Kulikov A. N., Kulikov D. A., Metlitskaya A. V., “Vysokomodovye volnovye relefy v ramkakh prostranstvenno nelokalnoi modeli erozii”, Mikroelektronika, 43:2 (2014), 109–118
[14] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. mat. o-va, 10 (1967), 297–350
[15] Bradley R. M., Harper J. M. E., “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Technol. A., 6:4 (1988), 2390–2395 | DOI
[16] Kulikov D. A., “Spatially ingomogeneous dissipative structures in a periodic boundary-value problem for a nonlocal erosion equation”, J. Math. Sci., 205:6 (2015), 791–805 | DOI | MR | Zbl