Superintegrable Bertrand Natural Mechanical Systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 37-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding superintegrable systems (i.e., the systems with closed trajectories in a certain domain) in the class of natural mechanical systems invariant under rotations goes back to the works of Bertrand and Darboux. The systems of Bertrand type under various restrictions were described by J. Bertrand, G. Darboux, V. Perlik, A. Besse, O. A. Zagryadsky, E. A. Kudryavtseva, and D. A. Fedoseev. However, in full generality, this issue remained open because of the so-called equator problem. In the remaining difficult case with equators, we describe all Bertrand's natural mechanical systems and also solve the problem on the connection between various classes of systems of Bertrand type (the widest class of locally Bertrand systems, the class of Bertrand systems, the narrow class of strongly Bertrand systems, and so on), which coincide in the previously studied case of configuration manifolds without equators. In particular, we show that strongly Bertrand systems form a meager subset in the set of Bertrand systems and Bertrand systems form a meager subset in the set of locally Bertrand systems.
Keywords: superintegrable Bertrand systems, configurational rotation manifold, equator, Tannery surface
Mots-clés : Maupertuis principle.
@article{INTO_2018_148_a6,
     author = {E. A. Kudryavtseva and D. A. Fedoseev},
     title = {Superintegrable {Bertrand} {Natural} {Mechanical} {Systems}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {37--57},
     publisher = {mathdoc},
     volume = {148},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a6/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
AU  - D. A. Fedoseev
TI  - Superintegrable Bertrand Natural Mechanical Systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 37
EP  - 57
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_148_a6/
LA  - ru
ID  - INTO_2018_148_a6
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%A D. A. Fedoseev
%T Superintegrable Bertrand Natural Mechanical Systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 37-57
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_148_a6/
%G ru
%F INTO_2018_148_a6
E. A. Kudryavtseva; D. A. Fedoseev. Superintegrable Bertrand Natural Mechanical Systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 37-57. http://geodesic.mathdoc.fr/item/INTO_2018_148_a6/

[1] Zagryadskii O. A., Kudryavtseva E. A., Fedoseev D. A., “Obobschenie teoremy Bertrana na poverkhnosti vrascheniya”, Mat. sb., 203:8 (2012), 39–78 | DOI | MR | Zbl

[2] Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1981

[3] Kudryavtseva E. A., Fedoseev D. A., “Mekhanicheskie sistemy s zamknutymi traektoriyami na mnogoobraziyakh vrascheniya”, Mat. sb., 206:5 (2015), 107–126 | DOI | MR | Zbl

[4] Kudryavtseva E. A., Fedoseev D. A., “O mnogoobraziyakh Bertrana s ekvatorami”, Vestn. MGU. Ser. mat. mekh., 2016, no. 1, 40–44 | MR | Zbl

[5] Bertrand J., “Théorème relatif au mouvement d'un point attiré vers un centre fixe”, C. R. Acad. Sci. Paris, 77 (1873), 849–853 | Zbl

[6] Darboux G., “Étude d’une question relative au mouvement d’un point sur une surface de révolution”, Bull. Soc. Math. France, 5 (1877), 100–113 | DOI | MR | Zbl

[7] Darboux G., Leçons sur la Théorie générale des Surfaces, Gauthier-Villars, Chelsea, 1972 | MR

[8] Liebmann H., “Über die Zentralbewegung in der nichteuklidische Geometrie”, Berichte der Königl. Sächsischen Gesellschaft der Wissenschaft. Math. Phys. Klasse, 55 (1903), 146–153 | Zbl

[9] Perlick V., “Bertrand spacetimes”, Class. Quant. Grav., 9 (1992), 1009–1021 | DOI | MR | Zbl

[10] Santoprete M., “Gravitational and harmonic oscillator potentials on surfaces of revolution”, J. Math. Phys., 49:4 (2008), 042903 | DOI | MR | Zbl