Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_148_a6, author = {E. A. Kudryavtseva and D. A. Fedoseev}, title = {Superintegrable {Bertrand} {Natural} {Mechanical} {Systems}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {37--57}, publisher = {mathdoc}, volume = {148}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a6/} }
TY - JOUR AU - E. A. Kudryavtseva AU - D. A. Fedoseev TI - Superintegrable Bertrand Natural Mechanical Systems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 37 EP - 57 VL - 148 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_148_a6/ LA - ru ID - INTO_2018_148_a6 ER -
%0 Journal Article %A E. A. Kudryavtseva %A D. A. Fedoseev %T Superintegrable Bertrand Natural Mechanical Systems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 37-57 %V 148 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_148_a6/ %G ru %F INTO_2018_148_a6
E. A. Kudryavtseva; D. A. Fedoseev. Superintegrable Bertrand Natural Mechanical Systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 37-57. http://geodesic.mathdoc.fr/item/INTO_2018_148_a6/
[1] Zagryadskii O. A., Kudryavtseva E. A., Fedoseev D. A., “Obobschenie teoremy Bertrana na poverkhnosti vrascheniya”, Mat. sb., 203:8 (2012), 39–78 | DOI | MR | Zbl
[2] Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1981
[3] Kudryavtseva E. A., Fedoseev D. A., “Mekhanicheskie sistemy s zamknutymi traektoriyami na mnogoobraziyakh vrascheniya”, Mat. sb., 206:5 (2015), 107–126 | DOI | MR | Zbl
[4] Kudryavtseva E. A., Fedoseev D. A., “O mnogoobraziyakh Bertrana s ekvatorami”, Vestn. MGU. Ser. mat. mekh., 2016, no. 1, 40–44 | MR | Zbl
[5] Bertrand J., “Théorème relatif au mouvement d'un point attiré vers un centre fixe”, C. R. Acad. Sci. Paris, 77 (1873), 849–853 | Zbl
[6] Darboux G., “Étude d’une question relative au mouvement d’un point sur une surface de révolution”, Bull. Soc. Math. France, 5 (1877), 100–113 | DOI | MR | Zbl
[7] Darboux G., Leçons sur la Théorie générale des Surfaces, Gauthier-Villars, Chelsea, 1972 | MR
[8] Liebmann H., “Über die Zentralbewegung in der nichteuklidische Geometrie”, Berichte der Königl. Sächsischen Gesellschaft der Wissenschaft. Math. Phys. Klasse, 55 (1903), 146–153 | Zbl
[9] Perlick V., “Bertrand spacetimes”, Class. Quant. Grav., 9 (1992), 1009–1021 | DOI | MR | Zbl
[10] Santoprete M., “Gravitational and harmonic oscillator potentials on surfaces of revolution”, J. Math. Phys., 49:4 (2008), 042903 | DOI | MR | Zbl