On a Dynamical System That Describes the Motion of a Parachutist
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 32-36
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a system of differential equations describing the free fall of a parachutist and his dropping with the open parachute canopy. The system is studies qualitatively and its possible equilibrium states are examined. The calculations were performed for experimental data obtained from realistic jumps.
Keywords:
differential equation, free fall, equilibrium state.
Mots-clés : parachute
Mots-clés : parachute
@article{INTO_2018_148_a5,
author = {I. Yu. Klochkova},
title = {On a {Dynamical} {System} {That} {Describes} the {Motion} of a {Parachutist}},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {32--36},
publisher = {mathdoc},
volume = {148},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a5/}
}
TY - JOUR AU - I. Yu. Klochkova TI - On a Dynamical System That Describes the Motion of a Parachutist JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 32 EP - 36 VL - 148 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_148_a5/ LA - ru ID - INTO_2018_148_a5 ER -
%0 Journal Article %A I. Yu. Klochkova %T On a Dynamical System That Describes the Motion of a Parachutist %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 32-36 %V 148 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_148_a5/ %G ru %F INTO_2018_148_a5
I. Yu. Klochkova. On a Dynamical System That Describes the Motion of a Parachutist. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 32-36. http://geodesic.mathdoc.fr/item/INTO_2018_148_a5/