On a Dynamical System That Describes the Motion of a Parachutist
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 32-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of differential equations describing the free fall of a parachutist and his dropping with the open parachute canopy. The system is studies qualitatively and its possible equilibrium states are examined. The calculations were performed for experimental data obtained from realistic jumps.
Keywords: differential equation, free fall, equilibrium state.
Mots-clés : parachute
@article{INTO_2018_148_a5,
     author = {I. Yu. Klochkova},
     title = {On a {Dynamical} {System} {That} {Describes} the {Motion} of a {Parachutist}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {32--36},
     publisher = {mathdoc},
     volume = {148},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a5/}
}
TY  - JOUR
AU  - I. Yu. Klochkova
TI  - On a Dynamical System That Describes the Motion of a Parachutist
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 32
EP  - 36
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_148_a5/
LA  - ru
ID  - INTO_2018_148_a5
ER  - 
%0 Journal Article
%A I. Yu. Klochkova
%T On a Dynamical System That Describes the Motion of a Parachutist
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 32-36
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_148_a5/
%G ru
%F INTO_2018_148_a5
I. Yu. Klochkova. On a Dynamical System That Describes the Motion of a Parachutist. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 32-36. http://geodesic.mathdoc.fr/item/INTO_2018_148_a5/

[3] Borovkov A. A., Matematicheskaya statistika, Lan, SPb., 2010

[4] Kalitkin N. N., Chislennye metody, Nauka, M., 1972

[5] Klochkova I. Yu., “Matematicheskaya model ploskogo dvizheniya tyazheloi tochki”, Vestn. RAEN, 16:3 (2016), 28–33

[6] Lyalin V. V., Morozov V. I., Ponomarev A. T., Parashyutnye sistemy, Fizmatlit, M., 2009

[7] Nekrasov A. I., Kurs teoreticheskoi mekhaniki, GITTL, M., 1958

[8] Usachev Yu. V., Kurashin V. N., “Matematicheskaya model dvizheniya parashyutista”, Vestn. RGU im. S. A. Esenina, 26:1 (2010), 108–115