Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_148_a4, author = {I. V. Izmest'ev and V. I. Ukhobotov}, title = {Pursuit {Problem} of {Low-Maneuverable} {Objects} with a {Ring-Shape} {Terminal} {Set}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {25--31}, publisher = {mathdoc}, volume = {148}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a4/} }
TY - JOUR AU - I. V. Izmest'ev AU - V. I. Ukhobotov TI - Pursuit Problem of Low-Maneuverable Objects with a Ring-Shape Terminal Set JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 25 EP - 31 VL - 148 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_148_a4/ LA - ru ID - INTO_2018_148_a4 ER -
%0 Journal Article %A I. V. Izmest'ev %A V. I. Ukhobotov %T Pursuit Problem of Low-Maneuverable Objects with a Ring-Shape Terminal Set %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 25-31 %V 148 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_148_a4/ %G ru %F INTO_2018_148_a4
I. V. Izmest'ev; V. I. Ukhobotov. Pursuit Problem of Low-Maneuverable Objects with a Ring-Shape Terminal Set. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 25-31. http://geodesic.mathdoc.fr/item/INTO_2018_148_a4/
[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR
[2] Kumkov S. S., Le Menek S., Patsko V. S., “Mnozhestva razreshimosti v zadache presledovaniya s dvumya dogonyayuschimi i odnim ubegayuschim”, Tr. In-ta mat. mekh. UrO RAN, 20:3 (2014), 148–165 | MR
[3] Ukhobotov V. I., Izmestev I. V., “Odnotipnye differentsialnye igry s terminalnym mnozhestvom v forme koltsa”, Dinamika sistem i protsessy upravleniya (SDCP’2014), Tr. mezhdunar. nauch. konf. (Ekaterinburg, 15–20 sentyabrya 2014 g.), IMM UrO RAN, Ekaterinburg, 2015, 325–332
[4] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, Fizmatlit, M., 2001
[5] Ganebny S. A., Kumkov S. S., Le Menec S., Patsko V. S., “Model problem in a line with two pursuers and one evader”, Dyn. Games Appl., 2:2 (2012), 228–257 | DOI | MR | Zbl
[6] Shima T., Shinar J., “Time-varying linear pursuit-evasion game models with bounded controls”, J. Guid. Control Dynam., 25:3 (2002), 425–432 | DOI
[7] Shinar J., “Solution techniques for realistic pursuit-evasion games”, Adv. Control Dynam. Systems, 17 (1981), 63–124 | DOI | Zbl
[8] Shinar J., Medinah M., Biton M., “Singular surface in a linear pursuit-evasion game with elliptical vectograms”, J. Optim. Theory Appl., 43:3 (1984), 431–456 | DOI | MR | Zbl
[9] Shinar J., Zarkh M., “Pursuit of a faster evader—a linear game with elliptical vectograms”, Proc. 7th Int. Symp. on Dynamic Games (Yokosuka, Japan), 1996, 855–868
[10] Turetsky V., Glizer V. Y., “Continuous feedback control strategy with maximal capture zone in a class of pursuit games”, Int. Game Theory Rev., 7:1 (2005), 1–24 | DOI | MR | Zbl