Pursuit Problem of Low-Maneuverable Objects with a Ring-Shape Terminal Set
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 25-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a pursuit problem for two moving objects, a pursuer and an evader. The objects move in the same plane under the influence of controlled forces directed always perpendicular to their velocities. The laws of variation of these forces are determined by first-order controllers. The capture is determined by the condition that the relative distance between the objects belongs to a segment with positive endpoints. For the problem considered, we construct a control of the pursuer that guarantees the catch.
Keywords: pursuit problem, control, terminal set.
@article{INTO_2018_148_a4,
     author = {I. V. Izmest'ev and V. I. Ukhobotov},
     title = {Pursuit {Problem} of {Low-Maneuverable} {Objects} with a {Ring-Shape} {Terminal} {Set}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {25--31},
     publisher = {mathdoc},
     volume = {148},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a4/}
}
TY  - JOUR
AU  - I. V. Izmest'ev
AU  - V. I. Ukhobotov
TI  - Pursuit Problem of Low-Maneuverable Objects with a Ring-Shape Terminal Set
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 25
EP  - 31
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_148_a4/
LA  - ru
ID  - INTO_2018_148_a4
ER  - 
%0 Journal Article
%A I. V. Izmest'ev
%A V. I. Ukhobotov
%T Pursuit Problem of Low-Maneuverable Objects with a Ring-Shape Terminal Set
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 25-31
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_148_a4/
%G ru
%F INTO_2018_148_a4
I. V. Izmest'ev; V. I. Ukhobotov. Pursuit Problem of Low-Maneuverable Objects with a Ring-Shape Terminal Set. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 25-31. http://geodesic.mathdoc.fr/item/INTO_2018_148_a4/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[2] Kumkov S. S., Le Menek S., Patsko V. S., “Mnozhestva razreshimosti v zadache presledovaniya s dvumya dogonyayuschimi i odnim ubegayuschim”, Tr. In-ta mat. mekh. UrO RAN, 20:3 (2014), 148–165 | MR

[3] Ukhobotov V. I., Izmestev I. V., “Odnotipnye differentsialnye igry s terminalnym mnozhestvom v forme koltsa”, Dinamika sistem i protsessy upravleniya (SDCP’2014), Tr. mezhdunar. nauch. konf. (Ekaterinburg, 15–20 sentyabrya 2014 g.), IMM UrO RAN, Ekaterinburg, 2015, 325–332

[4] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, Fizmatlit, M., 2001

[5] Ganebny S. A., Kumkov S. S., Le Menec S., Patsko V. S., “Model problem in a line with two pursuers and one evader”, Dyn. Games Appl., 2:2 (2012), 228–257 | DOI | MR | Zbl

[6] Shima T., Shinar J., “Time-varying linear pursuit-evasion game models with bounded controls”, J. Guid. Control Dynam., 25:3 (2002), 425–432 | DOI

[7] Shinar J., “Solution techniques for realistic pursuit-evasion games”, Adv. Control Dynam. Systems, 17 (1981), 63–124 | DOI | Zbl

[8] Shinar J., Medinah M., Biton M., “Singular surface in a linear pursuit-evasion game with elliptical vectograms”, J. Optim. Theory Appl., 43:3 (1984), 431–456 | DOI | MR | Zbl

[9] Shinar J., Zarkh M., “Pursuit of a faster evader—a linear game with elliptical vectograms”, Proc. 7th Int. Symp. on Dynamic Games (Yokosuka, Japan), 1996, 855–868

[10] Turetsky V., Glizer V. Y., “Continuous feedback control strategy with maximal capture zone in a class of pursuit games”, Int. Game Theory Rev., 7:1 (2005), 1–24 | DOI | MR | Zbl