Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_148_a3, author = {M. M. Gadzhiev and A. S. Kuleshov and A. I. Bukanov}, title = {Geometric {Constraints} in the {Problem} of {Motion} of a {Two-Wheeled} {Ripstik} {Skateboard}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {20--24}, publisher = {mathdoc}, volume = {148}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a3/} }
TY - JOUR AU - M. M. Gadzhiev AU - A. S. Kuleshov AU - A. I. Bukanov TI - Geometric Constraints in the Problem of Motion of a Two-Wheeled Ripstik Skateboard JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 20 EP - 24 VL - 148 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_148_a3/ LA - ru ID - INTO_2018_148_a3 ER -
%0 Journal Article %A M. M. Gadzhiev %A A. S. Kuleshov %A A. I. Bukanov %T Geometric Constraints in the Problem of Motion of a Two-Wheeled Ripstik Skateboard %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 20-24 %V 148 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_148_a3/ %G ru %F INTO_2018_148_a3
M. M. Gadzhiev; A. S. Kuleshov; A. I. Bukanov. Geometric Constraints in the Problem of Motion of a Two-Wheeled Ripstik Skateboard. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 20-24. http://geodesic.mathdoc.fr/item/INTO_2018_148_a3/
[1] Golubev Yu. F., “Metod upravleniya dvizheniem robota-sneikbordista”, Prikl. mat. mekh., 70:3 (2006), 355–370 | MR | Zbl
[2] Kremnev A. V., Kuleshov A. S., Nelineinaya dinamika i ustoichivost dvizheniya prosteishei modeli skeitborda, Izd-vo Tsentra prikladnykh issledovanii pri mekhaniko-matematicheskom fakultete MGU, M., 2007
[3] Kremnev A. V., Kuleshov A. S., Matematicheskaya model skeitborda s tremya stepenyami svobody, Izd-vo Tsentra prikladnykh issledovanii pri mekhaniko-matematicheskom fakultete MGU, M., 2008
[4] Kuleshov A. S., “Matematicheskaya model sneikborda”, Mat. model., 18:5 (2006), 37–48 | MR | Zbl
[5] Lure A. I., Analiticheskaya mekhanika, GIFML, M., 1961
[6] Hubbard M., “Lateral dynamics and stability of the skateboard”, J. Appl. Mech., 46 (1979), 931–936 | DOI
[7] Hubbard M., “Human control of the skateboard”, J. Biomech., 13 (1980), 745–754 | DOI
[8] Ispolov Yu. G. M., Smolnikov B. A., “Skateboard dynamics”, Comp. Meth. Appl. Mech. Eng., 131 (1996), 327–333 | DOI | Zbl
[9] Kuleshov A. S., “Further development of the mathematical model of a snakeboard”, Regul. Chaot. Dynam., 12 (2007), 321–334 | DOI | MR | Zbl
[10] Lewis A. D., Ostrowski J. P., Murray R. M., Burdick J. W., “Nonholonomic mechanics and locomotion: the snakeboard example”, Proc. IEEE Int. Conf. on Robotics and Automation, 1994, 2391–2400
[11] Tianmiao Wang, Baiquan Su, Shaolong Kuang, Junchen Wang, “On kinematic mechanism of a two-wheel skateboard: The essboard”, J. Mech. Robot, 5 (2013), 034503-1–034503-7 | DOI