Geometric Constraints in the Problem of Motion of a Two-Wheeled Ripstik Skateboard
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 20-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Kinematics of the motion of a two-wheeled skateboard known as an essboard or a ripstik is studied in this paper. Using the theory of finite rotations, we propose an elementary derivation of the formula connecting the angle of slope of the ripstik platform with the angle of rotation of the wheels.
Keywords: two-wheeled ripstik skateboard, geometric constraint, finite rotation.
@article{INTO_2018_148_a3,
     author = {M. M. Gadzhiev and A. S. Kuleshov and A. I. Bukanov},
     title = {Geometric {Constraints} in the {Problem} of {Motion} of a {Two-Wheeled} {Ripstik} {Skateboard}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {20--24},
     publisher = {mathdoc},
     volume = {148},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a3/}
}
TY  - JOUR
AU  - M. M. Gadzhiev
AU  - A. S. Kuleshov
AU  - A. I. Bukanov
TI  - Geometric Constraints in the Problem of Motion of a Two-Wheeled Ripstik Skateboard
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 20
EP  - 24
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_148_a3/
LA  - ru
ID  - INTO_2018_148_a3
ER  - 
%0 Journal Article
%A M. M. Gadzhiev
%A A. S. Kuleshov
%A A. I. Bukanov
%T Geometric Constraints in the Problem of Motion of a Two-Wheeled Ripstik Skateboard
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 20-24
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_148_a3/
%G ru
%F INTO_2018_148_a3
M. M. Gadzhiev; A. S. Kuleshov; A. I. Bukanov. Geometric Constraints in the Problem of Motion of a Two-Wheeled Ripstik Skateboard. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 20-24. http://geodesic.mathdoc.fr/item/INTO_2018_148_a3/

[1] Golubev Yu. F., “Metod upravleniya dvizheniem robota-sneikbordista”, Prikl. mat. mekh., 70:3 (2006), 355–370 | MR | Zbl

[2] Kremnev A. V., Kuleshov A. S., Nelineinaya dinamika i ustoichivost dvizheniya prosteishei modeli skeitborda, Izd-vo Tsentra prikladnykh issledovanii pri mekhaniko-matematicheskom fakultete MGU, M., 2007

[3] Kremnev A. V., Kuleshov A. S., Matematicheskaya model skeitborda s tremya stepenyami svobody, Izd-vo Tsentra prikladnykh issledovanii pri mekhaniko-matematicheskom fakultete MGU, M., 2008

[4] Kuleshov A. S., “Matematicheskaya model sneikborda”, Mat. model., 18:5 (2006), 37–48 | MR | Zbl

[5] Lure A. I., Analiticheskaya mekhanika, GIFML, M., 1961

[6] Hubbard M., “Lateral dynamics and stability of the skateboard”, J. Appl. Mech., 46 (1979), 931–936 | DOI

[7] Hubbard M., “Human control of the skateboard”, J. Biomech., 13 (1980), 745–754 | DOI

[8] Ispolov Yu. G. M., Smolnikov B. A., “Skateboard dynamics”, Comp. Meth. Appl. Mech. Eng., 131 (1996), 327–333 | DOI | Zbl

[9] Kuleshov A. S., “Further development of the mathematical model of a snakeboard”, Regul. Chaot. Dynam., 12 (2007), 321–334 | DOI | MR | Zbl

[10] Lewis A. D., Ostrowski J. P., Murray R. M., Burdick J. W., “Nonholonomic mechanics and locomotion: the snakeboard example”, Proc. IEEE Int. Conf. on Robotics and Automation, 1994, 2391–2400

[11] Tianmiao Wang, Baiquan Su, Shaolong Kuang, Junchen Wang, “On kinematic mechanism of a two-wheel skateboard: The essboard”, J. Mech. Robot, 5 (2013), 034503-1–034503-7 | DOI