Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_148_a15, author = {V. V. Shurygin (Jr.)}, title = {On the {Equivalence} of {First-Order} {Abel} {Equations} with {Coefficients} {Depending} on the {Control} {Parameter}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {130--135}, publisher = {mathdoc}, volume = {148}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a15/} }
TY - JOUR AU - V. V. Shurygin (Jr.) TI - On the Equivalence of First-Order Abel Equations with Coefficients Depending on the Control Parameter JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 130 EP - 135 VL - 148 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_148_a15/ LA - ru ID - INTO_2018_148_a15 ER -
%0 Journal Article %A V. V. Shurygin (Jr.) %T On the Equivalence of First-Order Abel Equations with Coefficients Depending on the Control Parameter %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 130-135 %V 148 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_148_a15/ %G ru %F INTO_2018_148_a15
V. V. Shurygin (Jr.). On the Equivalence of First-Order Abel Equations with Coefficients Depending on the Control Parameter. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 130-135. http://geodesic.mathdoc.fr/item/INTO_2018_148_a15/
[1] Bibikov P. V., “Klassifikatsiya upravlyaemykh ansamblei proektivnykh tochek”, Izv. vuzov. Ser. mat., 3 (2015), 28–34 | Zbl
[2] Vinogradov A. M., Krasilschik I. S., Lychagin V. V., Vvedenie v geometriyu nelineinykh differentsialnykh uravnenii, Nauka, M., 1986 | MR
[3] Kushner A. G., Lychagin V. V., “Invarianty Petrova gamiltonovykh sistem s upravlyayuschim parametrom”, Avtomat. telemekh., 3 (2013), 83–102 | Zbl
[4] Olver P., Prilozheniya grupp Li k differentsialnyi uravneniyam, Mir, M., 1989
[5] Appell P., “Sur les invariants de quelques équations différentielles”, J. Math., 5 (1889), 361–423
[6] Gritsenko D. S., Kiriukhin O. M., “Differential invariants of feedback transformations for quasi-harmonic oscillation equations”, J. Geom. Phys., 113 (2017), 65–72 | MR | Zbl
[7] Kruglikov B. S., Lychagin V. V., Global Lie–Tresse theorem, arXiv: 1111.5480 [math.DG] | MR
[8] Lychagin V., “Feedback equivalence of $1$-dimensional control systems of the first order”, Geometry, Topology, and Their Applications, Proc. Inst. Math. NAS Ukraine, v. 6, 2009, 288–302 | Zbl
[9] Lychagin V., “Feedback differential invariants”, Acta Appl. Math., 109:1 (2010), 211–222 | DOI | MR | Zbl