Lie Jets and Higher-Order Partial Connections
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 122-129

Voir la notice de l'article provenant de la source Math-Net.Ru

Higher-order partial connections are studied in the paper. We find conditions under which the Lie jet of the field of a geometric object $\xi$ in the direction of the field of Weil $\mathbb{A}$-velocities $Y$ coincides with the covariant derivative $\nabla_Y\xi$ of this field with respect to some higher-order partial connection.
Mots-clés : Weil algebra, Lie jet.
Keywords: Weil bundle, partial connection, higher-order connection, Lie derivative
@article{INTO_2018_148_a14,
     author = {V. V. Shurygin},
     title = {Lie {Jets} and {Higher-Order} {Partial} {Connections}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {122--129},
     publisher = {mathdoc},
     volume = {148},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a14/}
}
TY  - JOUR
AU  - V. V. Shurygin
TI  - Lie Jets and Higher-Order Partial Connections
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 122
EP  - 129
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_148_a14/
LA  - ru
ID  - INTO_2018_148_a14
ER  - 
%0 Journal Article
%A V. V. Shurygin
%T Lie Jets and Higher-Order Partial Connections
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 122-129
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_148_a14/
%G ru
%F INTO_2018_148_a14
V. V. Shurygin. Lie Jets and Higher-Order Partial Connections. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 122-129. http://geodesic.mathdoc.fr/item/INTO_2018_148_a14/