Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_148_a14, author = {V. V. Shurygin}, title = {Lie {Jets} and {Higher-Order} {Partial} {Connections}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {122--129}, publisher = {mathdoc}, volume = {148}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a14/} }
TY - JOUR AU - V. V. Shurygin TI - Lie Jets and Higher-Order Partial Connections JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 122 EP - 129 VL - 148 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_148_a14/ LA - ru ID - INTO_2018_148_a14 ER -
V. V. Shurygin. Lie Jets and Higher-Order Partial Connections. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 122-129. http://geodesic.mathdoc.fr/item/INTO_2018_148_a14/
[1] Alekseevskii D. V., Vinogradov A. M., Lychagin V. V., “Osnovnye idei i ponyatiya differentsialnoi geometrii”, Itogi nauki i tekhn. Ser. Sovr. probl. mat. Fundam. napravl., 28 (1988), 5–289
[2] Vagner V. V., “Teoriya sostavnogo mnogoobraziya”, Tr. semin. po vekt. i tenz. analizu, 8 (1950), 11–72 | Zbl
[3] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhniki, v. 9, Probl. geom., VINITI, M., 1979, 5–246
[4] Shurygin V. V., “Mnogoobraziya nad algebrami i ikh primenenie v geometrii rassloenii strui”, Usp. mat. nauk, 48:2 (290) (1993), 75–106 | MR | Zbl
[5] Ehresmann C., “Les prolongements d'une variété différentiable. I. Calcul des jets, prolongement principal”, C. R. Acad. Sci., 233:11 (1951), 598–600 | MR | Zbl
[6] Ehresmann C., “Sur les connexions d'ordre supérieur”, Atti del V Congr. Unione Math. Ital., Roma, 1955, 326–328
[7] Kamber F. W., Tondeur Ph., Foliated bundles and characteristic classes, Springer-Verlag, 1975 | MR | Zbl
[8] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | MR | Zbl
[9] Krupka D., Krupka M., “Jets and contact elements”, Proc. Semin. Differ. Geom., Math. Publ., 2, ed. Krupka D., Silesian Univ. in Opava, Opava, 2000, 39–85 | MR | Zbl
[10] Molino P., Riemannian foliations, Birkhäuser, Basel, 1988 | MR | Zbl
[11] Muñoz J., Rodriguez J., Muriel F. J., “Weil bundles and jet spaces”, Czech. Math. J., 16 (125) (2000), 721–748 | MR
[12] Shurygin V. V., “Smooth manifolds over local algebras and Weil bundles”, J. Math. Sci., 108:2 (2002), 249–294 | DOI | MR | Zbl
[13] Shurygin V. V., “Lie jets and symmetries of geometric objects”, J. Math. Sci., 177:5 (2011), 758–771 | DOI | MR | Zbl
[14] Weil A., “Théorie des points proches sur les variététes différentiables”, Coll. Int. Centre Nat. Rech. Sci., v. 52, Strasbourg, 1953, 111–117 | MR