Lie Jets and Higher-Order Partial Connections
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 122-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

Higher-order partial connections are studied in the paper. We find conditions under which the Lie jet of the field of a geometric object $\xi$ in the direction of the field of Weil $\mathbb{A}$-velocities $Y$ coincides with the covariant derivative $\nabla_Y\xi$ of this field with respect to some higher-order partial connection.
Mots-clés : Weil algebra, Lie jet.
Keywords: Weil bundle, partial connection, higher-order connection, Lie derivative
@article{INTO_2018_148_a14,
     author = {V. V. Shurygin},
     title = {Lie {Jets} and {Higher-Order} {Partial} {Connections}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {122--129},
     publisher = {mathdoc},
     volume = {148},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a14/}
}
TY  - JOUR
AU  - V. V. Shurygin
TI  - Lie Jets and Higher-Order Partial Connections
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 122
EP  - 129
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_148_a14/
LA  - ru
ID  - INTO_2018_148_a14
ER  - 
%0 Journal Article
%A V. V. Shurygin
%T Lie Jets and Higher-Order Partial Connections
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 122-129
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_148_a14/
%G ru
%F INTO_2018_148_a14
V. V. Shurygin. Lie Jets and Higher-Order Partial Connections. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 122-129. http://geodesic.mathdoc.fr/item/INTO_2018_148_a14/

[1] Alekseevskii D. V., Vinogradov A. M., Lychagin V. V., “Osnovnye idei i ponyatiya differentsialnoi geometrii”, Itogi nauki i tekhn. Ser. Sovr. probl. mat. Fundam. napravl., 28 (1988), 5–289

[2] Vagner V. V., “Teoriya sostavnogo mnogoobraziya”, Tr. semin. po vekt. i tenz. analizu, 8 (1950), 11–72 | Zbl

[3] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhniki, v. 9, Probl. geom., VINITI, M., 1979, 5–246

[4] Shurygin V. V., “Mnogoobraziya nad algebrami i ikh primenenie v geometrii rassloenii strui”, Usp. mat. nauk, 48:2 (290) (1993), 75–106 | MR | Zbl

[5] Ehresmann C., “Les prolongements d'une variété différentiable. I. Calcul des jets, prolongement principal”, C. R. Acad. Sci., 233:11 (1951), 598–600 | MR | Zbl

[6] Ehresmann C., “Sur les connexions d'ordre supérieur”, Atti del V Congr. Unione Math. Ital., Roma, 1955, 326–328

[7] Kamber F. W., Tondeur Ph., Foliated bundles and characteristic classes, Springer-Verlag, 1975 | MR | Zbl

[8] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | MR | Zbl

[9] Krupka D., Krupka M., “Jets and contact elements”, Proc. Semin. Differ. Geom., Math. Publ., 2, ed. Krupka D., Silesian Univ. in Opava, Opava, 2000, 39–85 | MR | Zbl

[10] Molino P., Riemannian foliations, Birkhäuser, Basel, 1988 | MR | Zbl

[11] Muñoz J., Rodriguez J., Muriel F. J., “Weil bundles and jet spaces”, Czech. Math. J., 16 (125) (2000), 721–748 | MR

[12] Shurygin V. V., “Smooth manifolds over local algebras and Weil bundles”, J. Math. Sci., 108:2 (2002), 249–294 | DOI | MR | Zbl

[13] Shurygin V. V., “Lie jets and symmetries of geometric objects”, J. Math. Sci., 177:5 (2011), 758–771 | DOI | MR | Zbl

[14] Weil A., “Théorie des points proches sur les variététes différentiables”, Coll. Int. Centre Nat. Rech. Sci., v. 52, Strasbourg, 1953, 111–117 | MR