Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_148_a13, author = {A. M. Shelekhov}, title = {Minimal {Projectivity} {Condition} for a {Smooth} {Mapping} and the {Gronwall} {Problem}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {109--121}, publisher = {mathdoc}, volume = {148}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a13/} }
TY - JOUR AU - A. M. Shelekhov TI - Minimal Projectivity Condition for a Smooth Mapping and the Gronwall Problem JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 109 EP - 121 VL - 148 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_148_a13/ LA - ru ID - INTO_2018_148_a13 ER -
%0 Journal Article %A A. M. Shelekhov %T Minimal Projectivity Condition for a Smooth Mapping and the Gronwall Problem %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 109-121 %V 148 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_148_a13/ %G ru %F INTO_2018_148_a13
A. M. Shelekhov. Minimal Projectivity Condition for a Smooth Mapping and the Gronwall Problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 109-121. http://geodesic.mathdoc.fr/item/INTO_2018_148_a13/
[2] Blyashke V., Vvedenie v geometriyu tkanei, Fizmatgiz, M., 1959
[3] Gvozdovich N. V., “Infinitezimalnye avtomorfizmy tri-tkanei Bolya i Mufang”, Tkani i kvazigruppy, Kalinin, 1981, 83–91 | MR | Zbl
[4] Gvozdovich N. V., “Ob infinitezimalnykh avtomorfizmakh mnogomernykh tri-tkanei”, Izv. vuzov. Ser. mat., 5 (1982), 73–75 | MR | Zbl
[5] Kartan E., Vneshnie differentsialnye sistemy i ikh geometricheskie prilozheniya, Izd-vo MGU, M., 1962
[6] Smirnov S. V., “Edinstvennost nomogrammy iz vyrovnennykh tochek s odnoi pryamolineinoi shkaloi”, Sib. mat. zh., 5:4 (1964), 910–922
[7] Shelekhov A. M., “Avtotopiya tri-tkanei i geometricheskie tri-tkani”, Izv. vuzov. Ser. mat., 5 (1990), 75–77 | MR | Zbl
[8] Shelekhov A. M., “Krivolineinye tri-tkani, dopuskayuschie odnoparametricheskoe semeistvo avtomorfizmov”, Izv. vuzov. Ser. mat., 5 (2005), 68–70 | Zbl
[9] Shelekhov A. M., Lazareva V. B., Utkin A. A., Krivolineinye tri-tkani, Izd-vo TGU, Tver, 2013
[10] Akivis M. A., Shelekhov A. M., Geometry and algebra of multidimensional three-webs, Kluwer Academic Publishers, Dordrecht–Boston–London, 1992 | MR | Zbl
[11] Dufour J. P., Jean P., “Rigidity of webs and families of hypersurfaces”, Singularities and dynamical systems, North-Holland, Amsterdam–New York, 1985, 271–283 | MR | Zbl
[12] Goldberg V. V., Lychagin V. V., “On the Blashke conjecture for 3-webs”, J. Geom. Anal., 16:1 (2006), 69–115 | DOI | MR | Zbl
[13] Gronwall F. H., “Sur les équations entre trois variables représetables par des nomogrammes à points alignés”, J. Math. Pures Appl., 8:1 (1912), 59–93 | MR
[14] Shelekhov A. M., “On the theory of $G$-webs and $G$-loops”, Lect. Notes Math., v. 1481, Springer-Verlag, Berlin, 1991, 265–270 | MR
[15] Shelekhov A. M., “Regular automorphisms of 3-webs and kernels of loops”, Webs and Quasigroups, Tver, 1992, 106–116 | MR | Zbl