Minimal Projectivity Condition for a Smooth Mapping and the Gronwall Problem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 109-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the following assertion is proved: let $GW$ and $\widetilde{GW}$ be the Grassmannian three-webs defined respectively in domains $D$ and $\tilde D$ of the Grassmannian manifold of straight lines of the projective space $P^{r+1}$; $\Phi: D\rightarrow \tilde D$ be a local diffeomorphism that maps foliations of the web $GW$ to foliations of the web $\widetilde{GW}$. Then $\Phi$ maps bundles of lines to bundles of lines, i.e., induces a point transformation, which is a projective transformation. In the case where $r=1$, the proof is much more complicated than in the multidimensional case. In the case where $r=1$, the dual theorem is formulated as follows: let $LW$ be a rectilinear three-web on a plane, i.e., three families of lines in the general position, and let this web be not regular, i.e., not locally diffeomorphic to the three-web formed by three families of parallel straight lines. Then each local diffeomorphism that maps a three-web $LW$ to another rectilinear three-web $\widetilde{LW}$ is a projective transformation. As a consequence, we obtain the positive solution of the Gronwall problem (Gronwall, 1912): if $W$ is a linearizable irregular three-web and $\theta$ and $\tilde{\theta}$ are local diffeomorphisms that map the three-web $W$ to some rectilinear three-webs, then $\tilde{\theta}=\pi \circ \theta$, where $\pi$ is a projective transformation.
Keywords: three-web, rectilinear three-web, Grassmannian three-web, Gronwall problem.
@article{INTO_2018_148_a13,
     author = {A. M. Shelekhov},
     title = {Minimal {Projectivity} {Condition} for a {Smooth} {Mapping} and the {Gronwall} {Problem}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {109--121},
     publisher = {mathdoc},
     volume = {148},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a13/}
}
TY  - JOUR
AU  - A. M. Shelekhov
TI  - Minimal Projectivity Condition for a Smooth Mapping and the Gronwall Problem
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 109
EP  - 121
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_148_a13/
LA  - ru
ID  - INTO_2018_148_a13
ER  - 
%0 Journal Article
%A A. M. Shelekhov
%T Minimal Projectivity Condition for a Smooth Mapping and the Gronwall Problem
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 109-121
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_148_a13/
%G ru
%F INTO_2018_148_a13
A. M. Shelekhov. Minimal Projectivity Condition for a Smooth Mapping and the Gronwall Problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 109-121. http://geodesic.mathdoc.fr/item/INTO_2018_148_a13/

[2] Blyashke V., Vvedenie v geometriyu tkanei, Fizmatgiz, M., 1959

[3] Gvozdovich N. V., “Infinitezimalnye avtomorfizmy tri-tkanei Bolya i Mufang”, Tkani i kvazigruppy, Kalinin, 1981, 83–91 | MR | Zbl

[4] Gvozdovich N. V., “Ob infinitezimalnykh avtomorfizmakh mnogomernykh tri-tkanei”, Izv. vuzov. Ser. mat., 5 (1982), 73–75 | MR | Zbl

[5] Kartan E., Vneshnie differentsialnye sistemy i ikh geometricheskie prilozheniya, Izd-vo MGU, M., 1962

[6] Smirnov S. V., “Edinstvennost nomogrammy iz vyrovnennykh tochek s odnoi pryamolineinoi shkaloi”, Sib. mat. zh., 5:4 (1964), 910–922

[7] Shelekhov A. M., “Avtotopiya tri-tkanei i geometricheskie tri-tkani”, Izv. vuzov. Ser. mat., 5 (1990), 75–77 | MR | Zbl

[8] Shelekhov A. M., “Krivolineinye tri-tkani, dopuskayuschie odnoparametricheskoe semeistvo avtomorfizmov”, Izv. vuzov. Ser. mat., 5 (2005), 68–70 | Zbl

[9] Shelekhov A. M., Lazareva V. B., Utkin A. A., Krivolineinye tri-tkani, Izd-vo TGU, Tver, 2013

[10] Akivis M. A., Shelekhov A. M., Geometry and algebra of multidimensional three-webs, Kluwer Academic Publishers, Dordrecht–Boston–London, 1992 | MR | Zbl

[11] Dufour J. P., Jean P., “Rigidity of webs and families of hypersurfaces”, Singularities and dynamical systems, North-Holland, Amsterdam–New York, 1985, 271–283 | MR | Zbl

[12] Goldberg V. V., Lychagin V. V., “On the Blashke conjecture for 3-webs”, J. Geom. Anal., 16:1 (2006), 69–115 | DOI | MR | Zbl

[13] Gronwall F. H., “Sur les équations entre trois variables représetables par des nomogrammes à points alignés”, J. Math. Pures Appl., 8:1 (1912), 59–93 | MR

[14] Shelekhov A. M., “On the theory of $G$-webs and $G$-loops”, Lect. Notes Math., v. 1481, Springer-Verlag, Berlin, 1991, 265–270 | MR

[15] Shelekhov A. M., “Regular automorphisms of 3-webs and kernels of loops”, Webs and Quasigroups, Tver, 1992, 106–116 | MR | Zbl