Minimal Projectivity Condition for a Smooth Mapping and the Gronwall Problem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 109-121

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the following assertion is proved: let $GW$ and $\widetilde{GW}$ be the Grassmannian three-webs defined respectively in domains $D$ and $\tilde D$ of the Grassmannian manifold of straight lines of the projective space $P^{r+1}$; $\Phi: D\rightarrow \tilde D$ be a local diffeomorphism that maps foliations of the web $GW$ to foliations of the web $\widetilde{GW}$. Then $\Phi$ maps bundles of lines to bundles of lines, i.e., induces a point transformation, which is a projective transformation. In the case where $r=1$, the proof is much more complicated than in the multidimensional case. In the case where $r=1$, the dual theorem is formulated as follows: let $LW$ be a rectilinear three-web on a plane, i.e., three families of lines in the general position, and let this web be not regular, i.e., not locally diffeomorphic to the three-web formed by three families of parallel straight lines. Then each local diffeomorphism that maps a three-web $LW$ to another rectilinear three-web $\widetilde{LW}$ is a projective transformation. As a consequence, we obtain the positive solution of the Gronwall problem (Gronwall, 1912): if $W$ is a linearizable irregular three-web and $\theta$ and $\tilde{\theta}$ are local diffeomorphisms that map the three-web $W$ to some rectilinear three-webs, then $\tilde{\theta}=\pi \circ \theta$, where $\pi$ is a projective transformation.
Keywords: three-web, rectilinear three-web, Grassmannian three-web, Gronwall problem.
@article{INTO_2018_148_a13,
     author = {A. M. Shelekhov},
     title = {Minimal {Projectivity} {Condition} for a {Smooth} {Mapping} and the {Gronwall} {Problem}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {109--121},
     publisher = {mathdoc},
     volume = {148},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a13/}
}
TY  - JOUR
AU  - A. M. Shelekhov
TI  - Minimal Projectivity Condition for a Smooth Mapping and the Gronwall Problem
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 109
EP  - 121
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_148_a13/
LA  - ru
ID  - INTO_2018_148_a13
ER  - 
%0 Journal Article
%A A. M. Shelekhov
%T Minimal Projectivity Condition for a Smooth Mapping and the Gronwall Problem
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 109-121
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_148_a13/
%G ru
%F INTO_2018_148_a13
A. M. Shelekhov. Minimal Projectivity Condition for a Smooth Mapping and the Gronwall Problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 109-121. http://geodesic.mathdoc.fr/item/INTO_2018_148_a13/