Asynchronous Modes of Phase Systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 101-108

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of frequency-phase-locked loop whose mathematical model is described by a system of differential equations. In this paper, conditions of the existence of asynchronous modes of a phase system are obtained.
Keywords: system of differential equations, frequency ring, cycle of second kind, system of matrix equations, rotation of a vector field, trajectory shift operator, fixed point.
@article{INTO_2018_148_a12,
     author = {A. O. Kharlamova},
     title = {Asynchronous {Modes} of {Phase} {Systems}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {101--108},
     publisher = {mathdoc},
     volume = {148},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a12/}
}
TY  - JOUR
AU  - A. O. Kharlamova
TI  - Asynchronous Modes of Phase Systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 101
EP  - 108
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_148_a12/
LA  - ru
ID  - INTO_2018_148_a12
ER  - 
%0 Journal Article
%A A. O. Kharlamova
%T Asynchronous Modes of Phase Systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 101-108
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_148_a12/
%G ru
%F INTO_2018_148_a12
A. O. Kharlamova. Asynchronous Modes of Phase Systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 101-108. http://geodesic.mathdoc.fr/item/INTO_2018_148_a12/