Nonzero Periodic Solutions of a Special System of Nonlinear Differential Equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 93-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem on the existence of a nonzero periodic solution of a system of differential equations using the fixed-point method for a nonlinear operator defined on the product of two compact sets.
Mots-clés : nonzero periodic solution, Jacobi matrix.
Keywords: nonlinear operator, fixed-point method, vector-valued function, vector-valued parameter, fundamental matrix of solutions, minor, rank of matrix, Lipschitz condition, vector-valued form
@article{INTO_2018_148_a11,
     author = {M. T. Terekhin},
     title = {Nonzero {Periodic} {Solutions} of a {Special} {System} of {Nonlinear} {Differential} {Equations}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {93--100},
     publisher = {mathdoc},
     volume = {148},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a11/}
}
TY  - JOUR
AU  - M. T. Terekhin
TI  - Nonzero Periodic Solutions of a Special System of Nonlinear Differential Equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 93
EP  - 100
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_148_a11/
LA  - ru
ID  - INTO_2018_148_a11
ER  - 
%0 Journal Article
%A M. T. Terekhin
%T Nonzero Periodic Solutions of a Special System of Nonlinear Differential Equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 93-100
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_148_a11/
%G ru
%F INTO_2018_148_a11
M. T. Terekhin. Nonzero Periodic Solutions of a Special System of Nonlinear Differential Equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 93-100. http://geodesic.mathdoc.fr/item/INTO_2018_148_a11/

[1] Bibikov Yu. N., Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, Izd-vo LGU, L., 1991

[2] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, M., 1955 | MR

[3] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[4] Terekhin M. T., “Bifurkatsii periodicheskikh reshenii funktsionalno-differentsialnykh uravnenii”, Izv. vuzov. Ser. mat., 10 (1999), 37–42 | Zbl