Cycles of the First Kind of Systems with Cylindrical Phase Space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 83-92
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider a system of differential equations with a cylindrical phase space, which is a mathematical model of a frequency-phase self-tuning system. Conditions for the existence of a limit cycle of the first kind are obtained.
Keywords:
limit cycle of the first kind, cylindrical phase space, positively invariant set, toroidal set.
@article{INTO_2018_148_a10,
author = {S. S. Mamonov and A. O. Kharlamova},
title = {Cycles of the {First} {Kind} of {Systems} with {Cylindrical} {Phase} {Space}},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {83--92},
publisher = {mathdoc},
volume = {148},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a10/}
}
TY - JOUR AU - S. S. Mamonov AU - A. O. Kharlamova TI - Cycles of the First Kind of Systems with Cylindrical Phase Space JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 83 EP - 92 VL - 148 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_148_a10/ LA - ru ID - INTO_2018_148_a10 ER -
%0 Journal Article %A S. S. Mamonov %A A. O. Kharlamova %T Cycles of the First Kind of Systems with Cylindrical Phase Space %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 83-92 %V 148 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_148_a10/ %G ru %F INTO_2018_148_a10
S. S. Mamonov; A. O. Kharlamova. Cycles of the First Kind of Systems with Cylindrical Phase Space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 83-92. http://geodesic.mathdoc.fr/item/INTO_2018_148_a10/