Cycles of the First Kind of Systems with Cylindrical Phase Space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 83-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a system of differential equations with a cylindrical phase space, which is a mathematical model of a frequency-phase self-tuning system. Conditions for the existence of a limit cycle of the first kind are obtained.
Keywords: limit cycle of the first kind, cylindrical phase space, positively invariant set, toroidal set.
@article{INTO_2018_148_a10,
     author = {S. S. Mamonov and A. O. Kharlamova},
     title = {Cycles of the {First} {Kind} of {Systems} with {Cylindrical} {Phase} {Space}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {83--92},
     publisher = {mathdoc},
     volume = {148},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a10/}
}
TY  - JOUR
AU  - S. S. Mamonov
AU  - A. O. Kharlamova
TI  - Cycles of the First Kind of Systems with Cylindrical Phase Space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 83
EP  - 92
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_148_a10/
LA  - ru
ID  - INTO_2018_148_a10
ER  - 
%0 Journal Article
%A S. S. Mamonov
%A A. O. Kharlamova
%T Cycles of the First Kind of Systems with Cylindrical Phase Space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 83-92
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_148_a10/
%G ru
%F INTO_2018_148_a10
S. S. Mamonov; A. O. Kharlamova. Cycles of the First Kind of Systems with Cylindrical Phase Space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 83-92. http://geodesic.mathdoc.fr/item/INTO_2018_148_a10/

[1] Leonov G. A., Burkin I. M., Shepelyavyi A. I., Chastotnye metody v teorii kolebanii, Izd-vo SPbGU, SPb., 1992 | MR

[2] Mamonov S. S., “Dinamika sistemy chastotno-fazovoi avtopodstroiki chastoty s filtrami pervogo poryadka”, Vestn. Novosib. gos. un-ta. Ser. mat. mekh. inform., 11:1 (2011), 70–81 | MR | Zbl

[3] Mamonov S. S., Ionova I. V., “Primenenie vrascheniya vektornogo polya dlya opredeleniya tsiklov vtorogo roda”, Vestn. RAEN. Differ. uravn., 14:5 (2014), 46–54

[4] Mamonov S. S., Kharlamova A. O., “Vliyanie chastotnogo koltsa sistemy fazovoi avtopodstroiki na usloviya suschestvovaniya tsiklov vtorogo roda”, Vestn. RAEN. Differ. uravn., 14:5 (2014), 55–60

[5] Mamonov S. S., Kharlamova A. O., “Otdelenie tsiklov vtorogo roda sistemy chastotno-fazovoi avtopodstroiki chastoty”, Vestn. RAEN. Differ. uravn., 15:3 (2015), 97–102

[6] Mamonov S. S., Kharlamova A. O., “Kvazisinkhronnye rezhimy fazovoi sistemy”, Vestn. Ryazan. gos. radiotekhn. un-ta, 56 (2016), 45–51

[7] Mamonov S. S., Kharlamova A. O., “Predelnye tsikly pervogo roda fazovykh sistem”, Vestn. RAEN. Differ. uravn., 16:3 (2016), 68–74

[8] Shalfeev V. D., Matrosov V. V., Nelineinaya dinamika sistem fazovoi sinkhronizatsii, Izd-vo NNGU, N. Novgorod, 2013