On a Regularization Method for Solutions of One Linear Ill-Posed Problem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 10-12
Voir la notice de l'article provenant de la source Math-Net.Ru
An effective and easy regularization method for solutions of a linear ill-posed problem
(namely, a Fredholm equation of the first kind) is proposed.
Keywords:
linear ill-posed problem, Fredholm equations, regularization of solutions.
@article{INTO_2018_148_a1,
author = {E. A. Borisova},
title = {On a {Regularization} {Method} for {Solutions} of {One} {Linear} {Ill-Posed} {Problem}},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {10--12},
publisher = {mathdoc},
volume = {148},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a1/}
}
TY - JOUR AU - E. A. Borisova TI - On a Regularization Method for Solutions of One Linear Ill-Posed Problem JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 10 EP - 12 VL - 148 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_148_a1/ LA - ru ID - INTO_2018_148_a1 ER -
%0 Journal Article %A E. A. Borisova %T On a Regularization Method for Solutions of One Linear Ill-Posed Problem %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 10-12 %V 148 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_148_a1/ %G ru %F INTO_2018_148_a1
E. A. Borisova. On a Regularization Method for Solutions of One Linear Ill-Posed Problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 10-12. http://geodesic.mathdoc.fr/item/INTO_2018_148_a1/