On a Regularization Method for Solutions of One Linear Ill-Posed Problem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 10-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

An effective and easy regularization method for solutions of a linear ill-posed problem (namely, a Fredholm equation of the first kind) is proposed.
Keywords: linear ill-posed problem, Fredholm equations, regularization of solutions.
@article{INTO_2018_148_a1,
     author = {E. A. Borisova},
     title = {On a {Regularization} {Method} for {Solutions} of {One} {Linear} {Ill-Posed} {Problem}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {10--12},
     publisher = {mathdoc},
     volume = {148},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_148_a1/}
}
TY  - JOUR
AU  - E. A. Borisova
TI  - On a Regularization Method for Solutions of One Linear Ill-Posed Problem
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 10
EP  - 12
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_148_a1/
LA  - ru
ID  - INTO_2018_148_a1
ER  - 
%0 Journal Article
%A E. A. Borisova
%T On a Regularization Method for Solutions of One Linear Ill-Posed Problem
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 10-12
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_148_a1/
%G ru
%F INTO_2018_148_a1
E. A. Borisova. On a Regularization Method for Solutions of One Linear Ill-Posed Problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, and Qualitative Theory,” Ryazan, September 15–18, 2016, Tome 148 (2018), pp. 10-12. http://geodesic.mathdoc.fr/item/INTO_2018_148_a1/

[1] Verlan A. F., Sizikov V. S., Integralnye uravneniya: metody, algoritmy, programmy, Naukova dumka, Kiev, 1986 | MR

[2] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978