Multiple Flag Varieties
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on algebra and geometry of the Samara University, Tome 147 (2018), pp. 84-119

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a review of results on multiple flag varieties, i.e., varieties of the form $G/P_1\times\dots\times G/P_r$. We provide a classification of multiple flag varieties of complexity $0$ and $1$ and results on the combinatorics and geometry of $B$-orbits and their closures in double cominuscule flag varieties. We also discuss questions of finiteness for the number of $G$-orbits and existence of an open $G$-orbits on a multiple flag variety.
Keywords: flag varieties, spherical varieties.
@article{INTO_2018_147_a2,
     author = {E. Yu. Smirnov},
     title = {Multiple {Flag} {Varieties}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {84--119},
     publisher = {mathdoc},
     volume = {147},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_147_a2/}
}
TY  - JOUR
AU  - E. Yu. Smirnov
TI  - Multiple Flag Varieties
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 84
EP  - 119
VL  - 147
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_147_a2/
LA  - ru
ID  - INTO_2018_147_a2
ER  - 
%0 Journal Article
%A E. Yu. Smirnov
%T Multiple Flag Varieties
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 84-119
%V 147
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_147_a2/
%G ru
%F INTO_2018_147_a2
E. Yu. Smirnov. Multiple Flag Varieties. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on algebra and geometry of the Samara University, Tome 147 (2018), pp. 84-119. http://geodesic.mathdoc.fr/item/INTO_2018_147_a2/