Multiple Flag Varieties
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on algebra and geometry of the Samara University, Tome 147 (2018), pp. 84-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a review of results on multiple flag varieties, i.e., varieties of the form $G/P_1\times\dots\times G/P_r$. We provide a classification of multiple flag varieties of complexity $0$ and $1$ and results on the combinatorics and geometry of $B$-orbits and their closures in double cominuscule flag varieties. We also discuss questions of finiteness for the number of $G$-orbits and existence of an open $G$-orbits on a multiple flag variety.
Keywords: flag varieties, spherical varieties.
@article{INTO_2018_147_a2,
     author = {E. Yu. Smirnov},
     title = {Multiple {Flag} {Varieties}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {84--119},
     publisher = {mathdoc},
     volume = {147},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_147_a2/}
}
TY  - JOUR
AU  - E. Yu. Smirnov
TI  - Multiple Flag Varieties
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 84
EP  - 119
VL  - 147
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_147_a2/
LA  - ru
ID  - INTO_2018_147_a2
ER  - 
%0 Journal Article
%A E. Yu. Smirnov
%T Multiple Flag Varieties
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 84-119
%V 147
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_147_a2/
%G ru
%F INTO_2018_147_a2
E. Yu. Smirnov. Multiple Flag Varieties. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on algebra and geometry of the Samara University, Tome 147 (2018), pp. 84-119. http://geodesic.mathdoc.fr/item/INTO_2018_147_a2/

[1] Burbaki N., Gruppy i algebry Li. Gruppy Kokstera i sistemy Titsa. Gruppy, porozhdennye otrazheniyami. Sistemy kornei, Mir, M., 1972

[2] Zelevinskii A. V., “Malye razresheniya osobennostei mnogoobrazii Shuberta”, Funkts. anal. prilozh., 17:2 (1983), 75–77 | MR

[3] Ponomareva E. V., “Klassifikatsiya dvoinykh mnogoobrazii flagov slozhnosti $0$ i $1$”, Izv. RAN. Ser. mat., 77:5 (2013), 155–178 | DOI | MR | Zbl

[4] Ponomareva E. V., “Invarianty kolets Koksa dvoinykh mnogoobrazii flagov maloi slozhnosti klassicheskikh grupp”, Tr. Mosk. mat. o-va, 76:1 (2015), 85–150 | Zbl

[5] Ponomareva E. V., “Invarianty kolets Koksa dvoinykh mnogoobrazii flagov maloi slozhnosti dlya osobykh grupp”, Mat. sb., 208:5 (2017), 129–166 | DOI | MR | Zbl

[6] Smirnov E. Yu., “Razresheniya osobennostei dlya mnogoobrazii Shuberta v dvoinykh grassmanianakh”, Funkts. anal. prilozh., 42:2 (2008), 56–67 | DOI | MR | Zbl

[7] Achinger P., Perrin N., Spherical multiple flags, arXiv: 1307.7236 [math.AG] | MR

[8] Arzhantsev I., Derenthal U., Hausen J., Laface A., “Cox rings”, Cambridge Stud. Adv. Math., 144 (2015), Cambridge University Press, Cambridge | MR | Zbl

[9] Bobiński G., Zwara G., “Schubert varieties and representations of Dynkin quivers”, Colloq. Math., 94:2 (2002), 285–309 | DOI | MR | Zbl

[10] Bongartz K., “Degenerations for representations of tame quivers”, Ann. Sci. École Norm. Sup. (4), 28:5 (1995), 647–668 | DOI | MR | Zbl

[11] Bongartz K., “On degenerations and extensions of finite-dimensional modules”, Adv. Math., 121:2 (1996), 245–287 | DOI | MR | Zbl

[12] Bott R., Samelson H., “Applications of the theory of Morse to symmetric spaces”, Am. J. Math., 80 (1958), 964–1029 | DOI | MR

[13] Brion M., “Groupe de Picard et nombres caractéristiques des variétés sphériques”, Duke Math. J., 58:2 (1989), 397–424 | DOI | MR | Zbl

[14] Brion M., “On orbit closures of spherical subgroups in flag varieties”, Comment. Math. Helv., 76:2 (2001), 263–299 | DOI | MR | Zbl

[15] Brion M, “Multiplicity-free subvarieties of flag varieties”, Commutative Algebra (Grenoble/Lyon, 2001), Contemp. Math., 331, Am. Math. Soc., Providence, Rhode Island, 2003, 13–23 | DOI | MR | Zbl

[16] Brion M., “Lectures on the geometry of flag varieties”, Topics in Cohomological Studies of Algebraic Varieties, Trends Math., Birkhäuser, Basel, 2005, 33–85 | DOI | MR

[17] Brion M., Kumar Sh., Frobenius splitting methods in geometry and representation theory, Birkhäuser, Boston, 2005 | MR | Zbl

[18] Coskun I., Hadian M., Zakharov D., “Dense $\mathbb{P}GL$-orbits in products of Grassmannians”, J. Algebra, 429 (2015), 75–102 | DOI | MR | Zbl

[19] Danilov V. I., Koshevoi G. A., “Massifs and the combinatorics of Young tableaux”, Usp. Mat. Nauk, 60:2 (362) (2005), 79–142 | DOI | MR | Zbl

[20] Demazure M., “Désingularisation des variétés de Schubert généralisées”, Ann. Sci. École Norm. Sup. (4), 7 (1974), 53–88 | DOI | MR | Zbl

[21] Demazure M., “A very simple proof of Bott's theorem”, Invent. Math., 33:3 (1976), 271–272 | DOI | MR | Zbl

[22] Devyatov R., “Generically transitive actions on multiple flag varieties”, Int. Math. Res. Not., 11 (2014), 2972–2989 | DOI | MR | Zbl

[23] Finkelberg M., Ginzburg V., Travkin R, “Mirabolic affine Grassmannian and character sheaves”, Selecta Math. (N.S.), 14:3–4 (2009), 607–628 | DOI | MR | Zbl

[24] Fulton W., Young tableaux, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[25] Fulton W., Harris J., Representation theory, Springer-Verlag, New York, 1991 | MR | Zbl

[26] Gabriel P, “Unzerlegbare Darstellungen. I”, Manuscr. Math., 6 (1972), 71–103 correction: ibid. | DOI | MR | Zbl

[27] Hansen H. C., “On cycles in flag manifolds”, Math. Scand., 33 (1974), 269–274 | DOI | MR | Zbl

[28] Humphreys J. E., Reflection groups and Coxeter groups, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[29] Kleiman S. L., Laksov D., “Schubert calculus”, Am. Math. Monthly, 79 (1972), 1061–1082 | DOI | MR | Zbl

[30] Kleiman S. L., “The transversality of a general translate”, Compos. Math., 28 (1974), 287–297 | MR | Zbl

[31] Knop F., “On the set of orbits for a Borel subgroup”, Comment. Math. Helv., 70:2 (1995), 285–309 | DOI | MR | Zbl

[32] Knutson A., Tao T., Woodward C., “The honeycomb model of $\operatorname{GL}_n(\mathbb{C})$ tensor products. II. Puzzles determine facets of the Littlewood–Richardson cone”, J. Am. Math. Soc., 17:1 (2004), 19–48 | DOI | MR | Zbl

[33] Knutson A., Zinn-Justin P., “The Brauer loop scheme and orbital varieties”, J. Geom. Phys., 78 (2014), 80–110 | DOI | MR | Zbl

[34] Landsberg J. M., Manivel L., “On the projective geometry of rational homogeneous varieties”, Comment. Math. Helv., 78:1 (2003), 65–100 | DOI | MR | Zbl

[35] Littelmann P., “A Littlewood–Richardson rule for symmetrizable Kac–Moody algebras”, Invent. Math., 116:1–3 (1994), 329–346 | DOI | MR | Zbl

[36] Littelmann P., “On spherical double cones”, J. Algebra, 166:1 (1994), 142–157 | DOI | MR | Zbl

[37] Littlewood D. E., Richardson A. R., “Group characters and algebra”, Philos. Trans. Roy. Soc. London. Ser. A., 1934, 99–141 | Zbl

[38] Magyar P., “Bruhat order for two flags and a line”, J. Alg. Combin., 21:1 (2005), 71–101 | DOI | MR | Zbl

[39] Magyar P., Weyman J., Zelevinsky A., “Multiple flag varieties of finite type”, Adv. Math., 141:1 (1999), 97–118 | DOI | MR | Zbl

[40] Magyar P., Weyman J., Zelevinsky A., “Symplectic multiple flag varieties of finite type”, J. Algebra, 230:1 (2000), 245–265 | DOI | MR | Zbl

[41] Melnikov (Melnikova) A., “{$B$}-Orbits in solutions to the equation {$X^2=0$} in triangular matrices”, J. Algebra, 223:1 (2000), 101–108 | DOI | MR | Zbl

[42] Melnikov (Melnikova) A., “The combinatorics of orbital varieties closures of nilpotent order $2$ in $sl_n$”, Electr. J. Combin., 12 (2005), R21 | DOI | MR

[43] Panyushev D. I., “Complexity and rank of double cones and tensor product decompositions”, Comment. Math. Helv., 68:3 (1993), 455–468 | DOI | MR | Zbl

[44] Parthasarathy K. R., Ranga Rao R., Varadarajan V. S., “Representations of complex semi-simple Lie groups and Lie algebras”, Ann. Math. (2), 85 (1967), 383–429 | DOI | MR | Zbl

[45] Perrin N., “On the geometry of spherical varieties”, Transform. Groups, 19:1 (2014), 171–223 | DOI | MR | Zbl

[46] Popov V. L., “Generically multiple transitive algebraic group actions”, Tata Inst. Fund. Res. Stud. Math., v. 19, Mumbai, 2007, 481–523 | MR | Zbl

[47] Purbhoo K., Sottile F., “The recursive nature of cominuscule Schubert calculus”, Adv. Math., 217:5 (2008), 1962–2004 | DOI | MR | Zbl

[48] Richardson R. W., Springer T. A., “The Bruhat order on symmetric varieties”, Geom. Dedicata, 35:1–3 (1990), 389–436 | MR | Zbl

[49] Riedtmann C., “Degenerations for representations of quivers with relations”, Ann. Sci. École Norm. Sup. (4), 19:2 (1986), 275–301 | DOI | MR | Zbl

[50] Schubert H., Kalkül der abzählenden Geometrie, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl

[51] Schützenberger M. P., “La correspondance de Robinson”, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976), Lect. Notes Math., 579, Springer-Verlag, Berlin, 1977, 59–113 | DOI | MR

[52] Serre J.-P., “Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts (d'après Armand Borel et André Weil)”, Séminaire Bourbaki, v. 100, Soc. Math. France, Paris, 1995, 447–454 | MR

[53] Smirnov E., Orbites d'un sous-groupe de Borel dans le produit de deux grassmanniennes, Ph.D. thesis, Université Joseph-Fourier-Grenoble I, 2007

[54] Smirnov E., “Grassmannians, flag varieties, and Gelfand–Zetlin polytopes”, Recent Developments in Representation Theory. Proceedings of Maurice Auslander Distinguished Lectures and International Conference, Contemp. Math., 673, Am. Math. Soc., Providence, Rhode Island, 2016, 179–226 | DOI | MR | Zbl

[55] Stembridge J. R., “Multiplicity-free products and restrictions of Weyl characters”, Represent. Theory, 7 (2003), 404–439 | DOI | MR | Zbl

[56] Timashev D. A., “Homogeneous spaces and equivariant embeddings”, Invariant Theory and Algebraic Transformation Groups–8, Encycl. Math. Sci., 138, Springer-Verlag, Heidelberg, 2011 | MR | Zbl

[57] Travkin R., “Mirabolic Robinson–Schensted–Knuth correspondence”, Selecta Math. (N.S.), 14:3–4 (2009), 727–758 | DOI | MR | Zbl