Complete Convex Solutions of Monge--Ampere-type Equations and Their Analogs
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on algebra and geometry of the Samara University, Tome 147 (2018), pp. 51-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study complete convex solutions of certain nonlinear elliptic equations by using geometric methods. We present a proof of the Jörgens–Calabi–Pogorelov theorem about improper convex affine spheres based on the study of complete convex solutions of the simplest Monge–Ampere equation. We consider a similar problem for Monge–Ampere equations of more general type. We prove that, under certain assumptions, solutions of these equations are quadratic polynomials.
Keywords: improper convex affine sphere, Monge–Ampere equation.
@article{INTO_2018_147_a1,
     author = {V. N. Kokarev},
     title = {Complete {Convex} {Solutions} of {Monge--Ampere-type} {Equations} and {Their} {Analogs}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {51--83},
     publisher = {mathdoc},
     volume = {147},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_147_a1/}
}
TY  - JOUR
AU  - V. N. Kokarev
TI  - Complete Convex Solutions of Monge--Ampere-type Equations and Their Analogs
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 51
EP  - 83
VL  - 147
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_147_a1/
LA  - ru
ID  - INTO_2018_147_a1
ER  - 
%0 Journal Article
%A V. N. Kokarev
%T Complete Convex Solutions of Monge--Ampere-type Equations and Their Analogs
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 51-83
%V 147
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_147_a1/
%G ru
%F INTO_2018_147_a1
V. N. Kokarev. Complete Convex Solutions of Monge--Ampere-type Equations and Their Analogs. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on algebra and geometry of the Samara University, Tome 147 (2018), pp. 51-83. http://geodesic.mathdoc.fr/item/INTO_2018_147_a1/

[1] Agmon S., Duglis A., Nirenberg L., Otsenki vblizi granitsy reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh pri obschikh granichnykh usloviyakh, IL, M., 1962

[2] Aleksandrov A. D., “K teorii smeshannykh ob'emov vypuklykh tel. Smeshannye diskriminanty i smeshannye ob'emy”, Mat. sb., 3:2 (1938), 227–251 | MR

[3] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976 | MR

[4] Grei A., Trubki. Formula Veilya i ee obobscheniya, Mir, M., 1993

[5] Zaguskin V. L., “Ob opisannykh i vpisannykh ellipsoidakh ekstremalnogo ob'ema”, Usp. mat. nauk, 13:6 (1958), 89–92 | MR

[6] Kokarev V. N., “O polnykh vypuklykh resheniyakh uravneniya $\operatorname{spur}_m(z_{ij})=1$”, Mat. fiz. anal. geom., 3:1–2 (1996), 102–117 | Zbl

[7] Kokarev V. N., “Ob uravnenii nesobstvennoi affinnoi sfery: obobschenie teoremy Ergensa”, Mat. sb., 194:11 (2003), 65–80 | DOI | MR | Zbl

[8] Lankaster P., Teoriya matrits, Nauka, M., 1978 | MR

[9] Pogorelov A. V., Mnogomernaya problema Minkovskogo, Nauka, M., 1975 | MR

[10] Pogorelov A. V., Mnogomernoe uravnenie Monzha—Ampera $\det(z_{ij})=\varphi (z_1,\ldots,z_n,z,x_1,\ldots,x_n)$, Nauka, M., 1988 | MR

[11] Blaschke W., Vorlesungen über Differentialgeometrie. II. Affine Differentialgeometrie, Springer-Verlag, Berlin, 1923 | MR | Zbl

[12] Caffarelli L., Nirenberg L., Spruck J., “The Dirichlet problem for nonlinear second order elliptic equations. III. Functions of the eigenvalues of Hessian”, Acta Math., 155:3–4 (1985), 261–304 | DOI | MR

[13] Calabi E., “Improper affine hyperspheres of convex type and a generalizations of a theorem by K. Jörgens”, Michigan Math. J., 5:2 (1958), 105–126 | DOI | MR | Zbl

[14] Calabi E., “An extension of E. Hopf's maximum principle with an application to Riemannian geometry”, Duke Math. J., 25 (1958), 45–56 | DOI | MR | Zbl

[15] Cheng S. Y., Yau S. T., “Complete affine hypersurfaces. Part I. The completeness of affine metrics”, Commum. Pure Appl. Math., 39 (1986), 839–866 | DOI | MR | Zbl

[16] Jörgens K., “Über die Lösungen der Differentialgleichung $rt-s^2=1$”, Math. Ann., 127 (1954), 130–134 | DOI | MR | Zbl

[17] Kokarev V. N., “On complete convex solutions of equations similar to the improper affine sphere equation”, J. Math. Phys. Anal. Geom., 3:4 (2007), 448–467 | MR | Zbl

[18] Tzitzeika G., “Sur one nouvelle classe de surfaces”, C. R. Acad. Sci. Paris, 145 (1907), 132–133

[19] Tzitzeika G., “Sur one nouvelle classe de surfaces”, C. R. Acad. Sci. Paris, 146 (1908), 165–166