Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_147_a1, author = {V. N. Kokarev}, title = {Complete {Convex} {Solutions} of {Monge--Ampere-type} {Equations} and {Their} {Analogs}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {51--83}, publisher = {mathdoc}, volume = {147}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_147_a1/} }
TY - JOUR AU - V. N. Kokarev TI - Complete Convex Solutions of Monge--Ampere-type Equations and Their Analogs JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 51 EP - 83 VL - 147 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_147_a1/ LA - ru ID - INTO_2018_147_a1 ER -
%0 Journal Article %A V. N. Kokarev %T Complete Convex Solutions of Monge--Ampere-type Equations and Their Analogs %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 51-83 %V 147 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_147_a1/ %G ru %F INTO_2018_147_a1
V. N. Kokarev. Complete Convex Solutions of Monge--Ampere-type Equations and Their Analogs. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on algebra and geometry of the Samara University, Tome 147 (2018), pp. 51-83. http://geodesic.mathdoc.fr/item/INTO_2018_147_a1/
[1] Agmon S., Duglis A., Nirenberg L., Otsenki vblizi granitsy reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh pri obschikh granichnykh usloviyakh, IL, M., 1962
[2] Aleksandrov A. D., “K teorii smeshannykh ob'emov vypuklykh tel. Smeshannye diskriminanty i smeshannye ob'emy”, Mat. sb., 3:2 (1938), 227–251 | MR
[3] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976 | MR
[4] Grei A., Trubki. Formula Veilya i ee obobscheniya, Mir, M., 1993
[5] Zaguskin V. L., “Ob opisannykh i vpisannykh ellipsoidakh ekstremalnogo ob'ema”, Usp. mat. nauk, 13:6 (1958), 89–92 | MR
[6] Kokarev V. N., “O polnykh vypuklykh resheniyakh uravneniya $\operatorname{spur}_m(z_{ij})=1$”, Mat. fiz. anal. geom., 3:1–2 (1996), 102–117 | Zbl
[7] Kokarev V. N., “Ob uravnenii nesobstvennoi affinnoi sfery: obobschenie teoremy Ergensa”, Mat. sb., 194:11 (2003), 65–80 | DOI | MR | Zbl
[8] Lankaster P., Teoriya matrits, Nauka, M., 1978 | MR
[9] Pogorelov A. V., Mnogomernaya problema Minkovskogo, Nauka, M., 1975 | MR
[10] Pogorelov A. V., Mnogomernoe uravnenie Monzha—Ampera $\det(z_{ij})=\varphi (z_1,\ldots,z_n,z,x_1,\ldots,x_n)$, Nauka, M., 1988 | MR
[11] Blaschke W., Vorlesungen über Differentialgeometrie. II. Affine Differentialgeometrie, Springer-Verlag, Berlin, 1923 | MR | Zbl
[12] Caffarelli L., Nirenberg L., Spruck J., “The Dirichlet problem for nonlinear second order elliptic equations. III. Functions of the eigenvalues of Hessian”, Acta Math., 155:3–4 (1985), 261–304 | DOI | MR
[13] Calabi E., “Improper affine hyperspheres of convex type and a generalizations of a theorem by K. Jörgens”, Michigan Math. J., 5:2 (1958), 105–126 | DOI | MR | Zbl
[14] Calabi E., “An extension of E. Hopf's maximum principle with an application to Riemannian geometry”, Duke Math. J., 25 (1958), 45–56 | DOI | MR | Zbl
[15] Cheng S. Y., Yau S. T., “Complete affine hypersurfaces. Part I. The completeness of affine metrics”, Commum. Pure Appl. Math., 39 (1986), 839–866 | DOI | MR | Zbl
[16] Jörgens K., “Über die Lösungen der Differentialgleichung $rt-s^2=1$”, Math. Ann., 127 (1954), 130–134 | DOI | MR | Zbl
[17] Kokarev V. N., “On complete convex solutions of equations similar to the improper affine sphere equation”, J. Math. Phys. Anal. Geom., 3:4 (2007), 448–467 | MR | Zbl
[18] Tzitzeika G., “Sur one nouvelle classe de surfaces”, C. R. Acad. Sci. Paris, 145 (1907), 132–133
[19] Tzitzeika G., “Sur one nouvelle classe de surfaces”, C. R. Acad. Sci. Paris, 146 (1908), 165–166